Veterinary Medicine Research Collection
Permanent URI for this collection
For more information about the School of Veterinary Medicine, please visit the official website.
Browse
Browsing Veterinary Medicine Research Collection by Type "Review"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- PublicationThe effects of mushroom powder and vitamin D2 enriched mushroom powder supplementation on the growth performance and health of newly weaned pigs(Wiley, 2022-05)
; ; ; ; ; ; ; ; A complete randomised block design experiment was conducted to examine the effects of mushroom powder (MP) and vitamin D2-enriched mushroom powder (MPD2) on growth performance, faecal scores, coefficient of apparent total tract digestibility (CATTD) of nutrients and selected microflora in weaned pigs up to day 35 post-weaning. One hundred and ninety-two weaned pigs (7.8kg [SD 1.08kg]) were blocked according to live weight, sex and litter of origin and randomly assigned to the following: (T1) control diet; (T2) control diet +MP; (T3) control diet + MPD2; and (T4) control diet +zinc oxide (ZnO) (n = 12 replicates/treatment). Mushroom powders were included at 2 g/kg of feed achieving a β-glucan content of 200ppm. ZnO was included at 3100 mg/kg feed and halved to 1550 mg/kg after 21 days. Vitamin D content was enhanced in MPD2 using synthetic UVB exposure to obtain a vitamin D2 level of 100 µg/kg of feed. Faecal samples were collected on day 14 for microbial and nutrient digestibility analysis. There was no difference (p > 0.05) in ADG, G:F, faecal scores, microbial populations and CATTD of nutrients in pigs supplemented with MP or MPD2 compared with the control diet. The supplementation of MP and MPD2 caused a reduction (p < 0.05) in feed intake compared with the control and ZnO diet throughout the 35-day experimental period. ZnO supplementation increased ADG and ADFI (p < 0.05) during the first period (D0-21) compared with pigs offered MP and MPD2. In conclusion, MP and MPD2 supplementation resulted in similar ADG, G:F, faecal scores compared with the control but were not comparable to ZnO, mainly due to a reduction in feed intake.27Scopus© Citations 3 - PublicationThe Role of Mitochondria in Optic Atrophy With Autosomal Inheritance(Frontiers Media, 2021-11-15)
; ; ; ; ; Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.30Scopus© Citations 1