Now showing 1 - 2 of 2
  • Publication
    Cyclic Nucleotide-dependent Protein Kinases Target ARHGAP17 and ARHGEF6 Complexes in Platelets
    (American Society for Biochemistry and Molecular Biology, 2015-12-11) ; ; ; ;
    Endothelial cells release prostacyclin (PGI2) and nitric oxide (NO) to inhibit platelet functions. PGI2 and NO effects are mediated by cyclic nucleotides, cAMP- and cGMP-dependent protein kinases (PKA, PKG), and largely unknown PKA and PKG substrate proteins. The small G-protein Rac1 plays a key role in platelets and was suggested to be a target of cyclic nucleotide signaling. We confirm that PKA and PKG activation reduces Rac1-GTP levels. Screening for potential mediators of this effect resulted in the identification of the Rac1-specific GTPase-activating protein ARHGAP17 and the guanine nucleotide exchange factor ARHGEF6 as new PKA and PKG substrates in platelets. We mapped the PKA/PKG phosphorylation sites to serine 702 on ARHGAP17 using Phos-tag gels and to serine 684 on ARHGEF6. We show that ARHGAP17 binds to the actin-regulating CIP4 protein in platelets and that Ser-702 phosphorylation interferes with this interaction. Reduced CIP4 binding results in enhanced inhibition of cell migration by ARHGAP17. Furthermore, we show that ARHGEF6 is constitutively linked to GIT1, a GAP of Arf family small G proteins, and that ARHGEF6 phosphorylation enables binding of the 14-3-3 adaptor protein to the ARHGEF6/GIT1 complex. PKA and PKG induced rearrangement of ARHGAP17- and ARHGEF6-associated protein complexes might contribute to Rac1 regulation and platelet inhibition.
      553Scopus© Citations 28
  • Publication
    Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor
    (American Society for Biochemistry and Molecular Biology, 2007-05-04) ; ; ; ;
    Phosphodiesterase type 2A (PDE2A) hydrolyzes cyclic nucleotides cAMP and cGMP, thus efficiently controlling cNMP-dependent signaling pathways. PDE2A is composed of an amino-terminal region, two regulatory GAF domains, and a catalytic domain. Cyclic nucleotide hydrolysis is known to be activated by cGMP binding to GAF-B; however, other mechanisms may operate to fine-tune local cyclic nucleotide levels. In a yeast two-hybrid screening we identified XAP2, a crucial component of the aryl hydrocarbon receptor (AhR) complex, as a major PDE2A-interacting protein. We mapped the XAP2 binding site to the GAF-B domain of PDE2A. PDE assays with purified proteins showed that XAP2 binding does not change the enzymatic activity of PDE2A. To analyze whether PDE2A could affect the function of XAP2, we studied nuclear translocation of AhR, i.e. the master transcription factor controlling the expression of multiple detoxification genes. Notably, regulation of AhR target gene expression is initiated by tetrachlorodibenzodioxin (TCDD) binding to AhR and by a poorly understood cAMP-dependent pathway followed by the translocation of AhR from the cytosol into the nucleus. Binding of PDE2A to XAP2 inhibited TCDD- and cAMP-induced nuclear translocation of AhR in Hepa1c1c7 hepatocytes. Furthermore, PDE2A attenuated TCDD-induced transcription in reporter gene assays. We conclude that XAP2 targets PDE2A to the AhR complex, thereby restricting AhR mobility, possibly by a local reduction of cAMP levels. Our results provide first insights into the elusive cAMP-dependent regulation of AhR.
      483Scopus© Citations 94