Now showing 1 - 2 of 2
  • Publication
    Carbene Iridium Complexes for Efficient Water Oxidation: Scope and Mechanistic Insights
    Iridium complexes of Cp* and mesoionic carbene ligands were synthesized and evaluated as potential water oxidation catalysts using cerium(IV) ammonium nitrate as a chemical oxidant. Performance was evaluated by turnover frequency at 50% conversion and by absolute turnover number, and the most promising precatalysts were studied further. Molecular turnover frequencies varied from 190 to 451 per hour with a maximum turnover number of 38 000. While the rate of oxygen evolution depends linearly on iridium concentration, concurrent spectroscopic and manometric observations following stoichiometric oxidant additions suggest oxygen evolution is limited by two sequential first-order reactions. Under the applied conditions, the oxygen evolving species appears to be a well-defined and molecular species based on kinetic analyses, effects of careful ligand design, reproducibility, and the absence of persistent dynamic light scattering signals. Outside of these conditions, the complex mechanism is highly dependent on reaction conditions. While confident characterization of the catalytically active species is difficult, especially under high-turnover conditions, this work strongly suggests the primary active species under these conditions is a molecular species.
      365Scopus© Citations 94
  • Publication
    Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond
    (Royal Society of Chemistry, 2013-02-11) ; ;
    Triazolylidenes have rapidly emerged as a powerful subclass of N-heterocyclic carbene ligands for transition metals. They are readily available through regioselective [2 + 3] cycloaddition of alkynes and azides and subsequent metallation according to procedures established for related carbenes. Due to their mesoionic character, triazolylidenes are stronger donors than Arduengo-type imidazol-2-ylidenes. Spurred by these attractive attributes and despite their only recent emergence, triazolylidenes have shown major implications in catalysis. This feature article summarises the synthetic accessibility of triazolylidene metal complexes and their electronic and structural characteristics, and it compiles their applications, in particular, as catalyst precursors for various bond forming and redox reactions, as well as first approaches into photophysical and biochemical domains.
      641Scopus© Citations 323