Now showing 1 - 2 of 2
  • Publication
    Bimetallic Iridium-Carbene Complexes with Mesoionic Triazolylidene Ligands for Water Oxidation Catalysis
    Two new diiridium–triazolylidene complexes were prepared as bimetallic analogues of established mononuclear water oxidation catalysts. Both complexes are efficient catalyst precursors in the presence of cerium ammonium nitrate (CAN) as sacrificial oxidant. Up to 20000:1 ratios of CAN/complex, the turnover limitation is the availability of CAN and not the catalyst stability. The water oxidation activity of the bimetallic complexes is not better than the monometallic species at 0.6 mm catalyst concentration. Under dilute conditions (0.03 mm), the bimetallic complexes double their activity, whereas the monometallic complexes show an opposite trend and display markedly reduced rates, thereby suggesting a benefit of the close proximity of two metal centers in this low concentration regime. The high dependence of catalyst activity on reaction conditions indicates that caution is required when catalysts are compared by their turnover frequencies only.
      459Scopus© Citations 47
  • Publication
    Iridium, ruthenium, and palladium complexes containing a mesoionic fused imidazolylidene ligand
    Imidazo[1,2-a]pyridine consisting of a pyridine fused to an imidazolium salt at the imidazolium N1–C2 bond and hence protected from forming normal imidazole-2-ylidene complexes undergoes selective activation of the C5–H bond with Ag2O, i.e. at the imidazolium carbon that is proximal to the pyridine nitrogen. While the silver carbene complex is unstable, transmetallation with [IrCp*Cl2]2, [RuCl2(cym)]2, and [PdCl(allyl)]2 afforded stable mesoionic carbene complexes. Two iridium(III) complexes containing one fused carbene ligand and one palladium(II) complex containing two carbene ligands at the metal centre were structurally characterized. The absence of substituents adjacent to the carbene carbon prevents wingtip group activation, and it imparts a reduced stability of the complexes in particular under (mildly) acidic conditions.
      448Scopus© Citations 14