Now showing 1 - 3 of 3
  • Publication
    Bimetallic Iridium-Carbene Complexes with Mesoionic Triazolylidene Ligands for Water Oxidation Catalysis
    Two new diiridium–triazolylidene complexes were prepared as bimetallic analogues of established mononuclear water oxidation catalysts. Both complexes are efficient catalyst precursors in the presence of cerium ammonium nitrate (CAN) as sacrificial oxidant. Up to 20000:1 ratios of CAN/complex, the turnover limitation is the availability of CAN and not the catalyst stability. The water oxidation activity of the bimetallic complexes is not better than the monometallic species at 0.6 mm catalyst concentration. Under dilute conditions (0.03 mm), the bimetallic complexes double their activity, whereas the monometallic complexes show an opposite trend and display markedly reduced rates, thereby suggesting a benefit of the close proximity of two metal centers in this low concentration regime. The high dependence of catalyst activity on reaction conditions indicates that caution is required when catalysts are compared by their turnover frequencies only.
      324Scopus© Citations 42
  • Publication
    Photolytic water oxidation catalyzed by a molecular carbene iridium complex
    The complex IrCl2(Cp*)(trz) (trz = triazolylidene), 2, was prepared from readily available 1,3-dimethyl-4-phenyl-1,2,3-triazolium salt. Under basic conditions, the C-bound phenyl group readily cyclometalates, while under acidic conditions, cyclometalation is reversed. The sensitivity of the Caryl–Ir bond but not the Ctrz–Ir bond towards acidolysis provided a basis for using 2 as a catalyst in CeIV-mediated water oxidation. The catalytic activity is characterized by a robust catalytic cycle, affording excellent turnover numbers (TON > 20 000). Under cerium-free conditions and in the presence of hematite as a photoelectrode, light-induced activity was observed. The photoelectrochemical reaction is strongly pH-dependent, which requires pH adjustments when running multiple cycle experiments to regenerate the catalytic activity. Analogous chelating complexes display better stability and higher catalytic activity than the monodentate complex 2.
      406Scopus© Citations 92
  • Publication
    Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond
    (Royal Society of Chemistry, 2013-02-11) ; ;
    Triazolylidenes have rapidly emerged as a powerful subclass of N-heterocyclic carbene ligands for transition metals. They are readily available through regioselective [2 + 3] cycloaddition of alkynes and azides and subsequent metallation according to procedures established for related carbenes. Due to their mesoionic character, triazolylidenes are stronger donors than Arduengo-type imidazol-2-ylidenes. Spurred by these attractive attributes and despite their only recent emergence, triazolylidenes have shown major implications in catalysis. This feature article summarises the synthetic accessibility of triazolylidene metal complexes and their electronic and structural characteristics, and it compiles their applications, in particular, as catalyst precursors for various bond forming and redox reactions, as well as first approaches into photophysical and biochemical domains.
      641Scopus© Citations 323