Options
Cahill, Niamh
Preferred name
Cahill, Niamh
Official Name
Cahill, Niamh
Research Output
Now showing 1 - 3 of 3
- PublicationA Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change(European Geosciences Union, 2016-02-29)
; ; ; We present a Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical (δ13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) a new Bayesian transfer (B-TF) function for the calibration of biological indicators into tidal elevation, which is flexible enough to formally accommodate additional proxies; (2) an existing chronology developed using the Bchron age–depth model, and (3) an existing Errors-In-Variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. Our approach is illustrated using a case study of Common Era sea-level variability from New Jersey, USA We develop a new B-TF using foraminifera, with and without the additional (δ13C) proxy and compare our results to those from a widely used weighted-averaging transfer function (WA-TF). The formal incorporation of a second proxy into the B-TF model results in smaller vertical uncertainties and improved accuracy for reconstructed RSL. The vertical uncertainty from the multi-proxy B-TF is  ∼  28 % smaller on average compared to the WA-TF. When evaluated against historic tide-gauge measurements, the multi-proxy B-TF most accurately reconstructs the RSL changes observed in the instrumental record (mean square error  =  0.003 m2). The Bayesian hierarchical model provides a single, unifying framework for reconstructing and analyzing sea-level change through time. This approach is suitable for reconstructing other paleoenvironmental variables (e.g., temperature) using biological proxies.629Scopus© Citations 41 - PublicationModeling sea-level change using errors-in-variables integrated Gaussian processes(Institute of Mathematical Statistics, 2015-06)
; ; ; We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The input data to our model are tidegauge measurements and proxy reconstructions from cores of coastal sediment. These data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. The model we propose places a Gaussian process prior on the rate of sea-level change, which is then integrated and set in an errors-in-variables framework to take account of age uncertainty. The resulting model captures the continuous and dynamic evolution of sea-level change with full consideration of all sources of uncertainty. We demonstrate the performance of our model using two real (and previously published) example data sets. The global tide-gauge data set indicates that sea-level rise increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89 to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible interval for the posterior mean). The proxy reconstruction from North Carolina (USA) after correction for land-level change shows the 2000 AD rate of rise to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible interval). This is unprecedented in at least the last 2000 years.304Scopus© Citations 55 - PublicationChange points of global temperatureWe aim to address the question of whether or not there is a significant recent 'hiatus', 'pause' or 'slowdown' of global temperature rise. Using a statistical technique known as change point (CP) analysis we identify the changes in four global temperature records and estimate the rates of temperature rise before and after these changes occur. For each record the results indicate that three CPs are enough to accurately capture the variability in the data with no evidence of any detectable change in the global warming trend since∼1970. We conclude that the term 'hiatus' or 'pause' cannot be statistically justified.
375Scopus© Citations 80