Now showing 1 - 1 of 1
  • Publication
    De Novo Protein Subcellular Localization Prediction by N-to-1 Neural Networks
    Knowledge of the subcellular location of a protein provides valuable information about its function and possible interaction with other proteins. In the post-genomic era, fast and accurate predictors of subcellular location are required if this abundance of sequence data is to be fully exploited. We have developed a subcellular localization predictor (SCL pred) which predicts the location of a protein into four classes for animals and fungi and five classes for plants (secretory pathway, cytoplasm, nucleus, mitochondrion and chloroplast) using high throughput machine learning techniques trained on large non-redundant sets of protein sequences. The algorithm powering SCL pred is a novel Neural Network (N-to-1 Neural Network, or N1-NN) which is capable of mapping whole sequences into single properties (a functional class, in this work) without resorting to predefined transformations, but rather by adaptively compressing the sequence into a hidden feature vector. We benchmark SCL pred against other publicly available predictors using two benchmarks including a new subset of Swiss-Prot release 57. We show that SCL pred compares favourably to the other state-of-the-art predictors. Moreover, the N1-NN algorithm is fully general and may be applied to a host of problems of similar shape, that is, in which a whole sequence needs to be mapped into a fixed-size array of properties, and the adaptive compression it operates may even shed light on the space of protein sequences.
    Scopus© Citations 3  165