Now showing 1 - 10 of 22
  • Publication
    Travelling waves in boundary-controlled, non-uniform, cascaded lumped systems
    (Elsevier, 2012-05) ;
    A companion paper considers travelling and standing waves in cascaded, lumped, mass-spring systems, controlled by two boundary actuators, one at each end, when the system is uniform. It first proposes definitions of waves in finite lumped systems. It then shows how to control the actuators to establish desired waves from rest, and to maintain them despite disturbances. The present paper extends this work to the more general, non-uniform case, when mass and spring values can be arbitrary. A special ¿bi-uniform¿ case is first studied, consisting of two different uniform cascaded systems in series, with an obvious, uncontrolled, impedance mismatch where they meet. The paper shows how boundary actuator control systems can be designed to establish, and robustly maintain, apparently pure travelling waves of constant amplitude in either the first or the second uniform section, in each case with an appropriate, partial, standing wave pattern in the other section. Then a more general non-uniform case is studied. A definition of a ¿pure travelling wave¿ in non-uniform systems is proposed. Curiously, it does not imply constant amplitude motion. It does however yield maximum power transfer between boundary actuators. The definition, and its implementation in a control system, involves extending the notions of ¿pure¿ travelling waves, of standing waves, and of input and output impedances of sources and loads, when applied to non-uniform lumped systems. Practical, robust control strategies are presented for all cases.
      460
  • Publication
    Development of the Ground Segment Communication System for the EIRSAT-1 CubeSat
    The Educational Irish Research Satellite (EIRSAT-1) is a student-led project to design, build and test Ireland’s first satellite. As part of the development, a ground segment (GS) has also been designed alongside the spacecraft. The ground segment will support two-way communications with the spacecraft throughout the mission. Communication with the satellite will occur in the very high frequency (VHF) and the ultra high frequency (UHF) bands for the uplink and downlink respectively. Different modulation schemes have been implemented for both uplink and downlink as part of the GS system. Uplink incorporates an Audio Frequency Shift-Keying (AFSK) scheme, while downlink incorporates a Gaussian Minimum Shift-Keying (GMSK) scheme. In order for the spacecraft to successfully receive a telecommand (TC) transmitted from the ground station, a framing protocol is required. AX.25 was selected as the data link layer protocol. A hardware terminal node controller (TNC) executes both the AX.25 framing and the AFSK modulation. Keep It Simple Stupid (KISS) framing software was developed to allow data to be accepted by the TNC. A software defined radio (SDR) approach has been chosen for the downlink. GNURadio is software that allows flowcharts to be built to undertake the required signal processing of the received signal, the demodulation of the signal and the decoding of data. This paper provides a detailed account of the software developed for the ground segment communication system. A review of the AX.25 and KISS framing protocols is presented. The GNURadio flowcharts that handle the signal processing and data decoding are broken down and each constituent is explained. To ensure the reliability and robustness of the system, a suite of tests was undertaken, the results of which are also presented.
      665
  • Publication
    Experimental modal analysis of violin and similar thin plates by added point masses
    Novel methods are proposed to measure the modal properties of thin plates, such as free violin plates (prior to assembly), simply and inexpensively, by measuring certain changes when a small mass is added to the resonating plate. Iso-amplitude contours and mode shapes can easily be plotted. Modal mass, stiffness and damping can also be inferred. Underlying theory is developed, and experimental and numerical modelling methods of validation are briefly outlined.
      800
  • Publication
    Update on the status of the Educational Irish Research Satellite (EIRSAT-1)
    The Educational Irish Research Satellite, EIRSAT-1, is a 2U CubeSat being implemented by a student-led team at University College Dublin, as part of the 2nd round of the European Space Agency’s Fly Your Satellite! programme. In development since 2017, the mission has several scientific, technological and outreach goals. It will fly an in-house developed antenna deployment module, along with three custom payloads, which are integrated with commercial off-the-shelf subsystems. In preparation for the flight model, a full-system engineering qualification model of the spacecraft has undergone an extensive period of test campaigns, including full functional tests, a mission test, and environmental testing at the European Space Agency’s CubeSat Support Facility in Redu, Belgium. Beyond the technical, educational, and capacity-building goals of the mission, EIRSAT-1 aims to inspire wider study of STEM subjects, while highlighting the importance of multidisciplinary teams and creating greater awareness of space in everyday life. A wide range of outreach activities are being undertaken to realise these aims. This paper provides a status update on key aspects of the EIRSAT-1 project and the next steps towards launch.
      17
  • Publication
    Quantitative MRI analysis of brain volume changes due to controlled cortical impact
    More than 85% of reported brain traumas are classified clinically as “mild” using GCS; qualitative MRI findings are scarce and provide little correspondence to clinical symptoms. Our goal, therefore, was to establish in-vivo sequellae of traumatic brain injury following lower and higher levels of impact to the frontal lobe using quantitative MRI analysis and a mechanical model of penetrating impact injury. To investigate time-based morphological and physiological changes of living tissue requires a surrogate for the human central nervous system. The present model for TBI was a systematically varied and controlled cortical impact on deeply-anaesthetized Sprague Dawley rats designed to mimic different injury severities. Whole-brain MRI scans were performed on each rat prior to either a lower or a higher level of impact and then at hourly intervals for five hours post-impact. Both brain volume and specific anatomical structures were segmented from MR images for inter-subject comparisons post-registration. Animals subjected to lower and higher impact levels exhibited elevated intracranial pressure (ICP) in the low compensatory reserve (i.e., nearly exhausted) and terminal disturbance (i.e., exhausted) ranges, respectively. There was a statistically-significant drop in cerebrospinal fluid of 35% in the lower impacts and 65% in the higher impacts at Hr5 in comparison to the sham control. There was a corresponding increase in corpus callosum volume starting from Hr1 of 60-110% and 30-40% following the lower and higher impact levels, respectively. A statistically significant change in the abnormal tissue from Hr2 to Hr5 was observed for both impact levels, with greater significance for higher impacts. Furthermore, a statistically significant difference between the lower impacts and the sham controls occurred at Hr3. These results are statistically substantiated by a fluctuation in the physical size of the corpus callosum, a decrease in the volume of CSF, and elevated levels of atrophy in the cerebral cortex.
      668Scopus© Citations 20
  • Publication
    Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts
    (Copernicus GmbH, 2013-07-01) ;
    The overhead trolley of a gantry crane can be moved in two directions in the plane. The trolley is attempting to control the motion of a suspended, rigid-body, distributed mass load, supported by a hook, modelled as a lumped mass, in turn connected to the trolley by a light flexible cable. This flexible system has six degrees of freedom, four variables describing the flexible, hanging load dynamics and two (directly controlled) input variables for the trolley position. The equations of motion are developed and the crane model is verified. Then a form of wave-based control (WBC) is applied to determine what trolley motion should be used to achieve a reference motion of the load, with minimum swing during complex manoeuvres. Despite the trolley's limited control authority over the complex, flexible 3-D dynamics, WBC enables the trolley to achieve very good motion control of the load, in a simple, robust and rapid way, using little sensor information, with all measurements taken at or close to the trolley.
      836Scopus© Citations 31
  • Publication
    Boundary-controlled travelling and standing waves in cascaded lumped systems
    (Elsevier, 2012-05) ;
    This paper shows how pure travelling waves in cascaded, lumped, uniform, mass-spring systems can be defined, established, and maintained, by controlling two boundary actuators, one at each end. In most cases the control system for each actuator requires identifying and measuring the notional component waves propagating in opposite directions at the actuator-system interfaces. These measured component waves are then used to form the control inputs to the actuators. The paper also shows how the boundaries can be actively controlled to establish and maintain standing waves of arbitrary standing wave ratio, including those corresponding to the classical modes of vibration of such systems with textbook boundary conditions. These vibration modes are achieved and maintained by controlled reflection of the pure travelling wave components. The proposed control systems are also robust to system disturbances: they react to overcome external disturbances quickly and so to re-establish the desired steady motion.
      541
  • Publication
    Wave-Based Analysis and Control of Lump-Modeled Flexible Robots
    (IEEE, 2007-04)
    Flexible robots are frequently represented by lumped models. In the mechanics of lumped systems, wave concepts have been avoided, for good reasons, generally. In the control of lumped flexible systems, however, wave concepts prove very fruitful. This paper provides a foundation for the wave-based control application by exploring the validity and nature of wave concepts in lumped robotic systems. A new wave-based model of uniform mass-spring systems is proposed and verified. The model is exact but not unique. Useful simplifications and approximations are also presented. The model leads to control strategies for flexible robotic systems that are simple, powerful, robust, and generic. The wave approach also provides a new analysis tool and conceptual framework for lumped dynamic systems.
      607Scopus© Citations 75
  • Publication
    A new approach to modal analysis of uniform chain systems
    (Elsevier, 2008-04-08) ;
    A new method is presented to determine the mode shapes and frequencies of uniform systems consisting of chains of masses and springs of arbitrary number with arbitrary boundary conditions. Instead of the classical eigenproblem approach, the system is analysed in terms of circulating waves and associated phase lags. The phasor conditions for the establishment of standing waves determine the vibration modes. The conditions fully specify their shapes and frequencies, and lead to simple, explicit expressions for the components of the modal vectors and the associated natural frequencies. In addition, the form of the phasor diagrams of the modes gives insight into the modal behaviour. The orthogonality of mode shapes also readily emerges. Examples are presented for different boundary conditions. Although not presented, it is possible to extend the approach to non-uniform lumped systems and to forced frequency responses.
    Scopus© Citations 8  1171
  • Publication
    Boundary-controlled travelling and standing waves in cascaded lumped systems
    (Elsevier, 2012-08) ;
    This paper describes how pure travelling waves in cascaded, lumped, uniform, mass-spring systems can be defined, established, and maintained, by controlling two boundary actuators, one at each end. In most cases the control system for each actuator requires identifying and measuring notional component waves, propagating in opposite directions, through the actuator-system interfaces. These measured component waves are then used to form the control inputs to the actuators. The paper also shows how the boundaries can be actively controlled to establish and maintain standing waves of arbitrary standing wave ratio, including those corresponding to classical modes of vibration with textbook boundary conditions. The proposed control systems are also robust to system disturbances: they react quickly to overcome external transient disturbances to re-establish the desired steady motion.
    Scopus© Citations 12  616