Now showing 1 - 2 of 2
  • Publication
    Trace metal exposure in different livestock production systems
    Industrial and agricultural activities are associated with environmental pollution as these practices contribute to increase further the concentration of minerals derived from the parent rock, present naturally in the soil. Heavy metals (i.e., arsenic, cadmium, lead and mercury) and excessive levels of essential metals (such as copper and zinc) have negative effects on the health of both animals and humans. The exposure of animals to toxic elements or excessive levels of essential minerals could influence greatly the mineral content of different animal derived products for human consumption (i.e., meat, offal and milk) and may affect significantly human health. The exposure of livestock to different minerals varies depending on the animal husbandry practices adopted by the farmers, such as the use of mineral supplements in animals’ feed and the foraging practices of the farm (i.e., grazing, type of soil and forage contamination). This chapter focuses on the influence of different farming practices on the exposure of livestock to toxic and trace elements, emphasising the differences between the intensive and organic farming systems. The relationship between different farming practices and the mineral content of animal derived products, together with the implications of these farming practices for the consumers and environment are also discussed.
      243
  • Publication
    New Breeding Strategies in Organic Dairy Farming
    The selection of an appropriate breed in dairy farms will have a huge influence on the animals’ welfare and production. This is especially noticeable in animal production systems that aim to maximize the use of on-farm resources (low-input production), i.e., organic farms. The animal production in organic farming systems focuses on maximizing the utilization of forage and improving the animals’ health and welfare, while reducing the application of drugs routinely applied in the treatment and prevention of diseases in the conventional farms. Thus, the selection of animals adapted to these harsh farming conditions is essential for the success of an organic farm. However, the current animal breeding strategies adopted by the farmers do not differ between the intensive and the organic animal production systems; i.e., the Holstein-Friesian is the most commonly used breed in the organic and intensive dairy farms, despite the poor production and adaptability of these animals to the organic production systems. Recent studies showed that animals bred to produce high milk yields in the conventional systems are not capable to adapt to pasture-based systems. Cattle breeding strategies based on the selection of the animals for functional traits, or the efficiency of the cows to use scarce resources (inputs), could be a good strategy when selecting animals for organic farms. This chapter analyzes the animal breeding strategies currently performed in the organic farms, and discusses the novel strategies and animal breeds that could potentially benefit different organic dairy farming systems, including multifunctional farms.
      354