Now showing 1 - 2 of 2
  • Publication
    Sampling Rate Reduction for Digital Predistortion of Broadband RF Power Amplifiers
    In this article, we present a novel technique to build digital predistorters that can linearize broadband power amplifiers (PAs) using reduced sampling rates. In contrast to conventional digital predistortion (DPD) where oversampling is necessary to avoid aliasing effect, the proposed method cancels the aliasing distortion using a sliced multistage cancellation scheme. A large reduction of sampling rate can be achieved in digital implementation of DPD, significantly reducing power consumption and implementation cost. Experimental results show that a DPD with a sampling rate of merely 1.5x, instead of 5x, signal bandwidth, can still produce satisfactory performance within the linearization bandwidth but consume only one-third of power, compared with that using the conventional approaches. The proposed technique provides a promising solution for the next-generation 5G systems, where large signal bandwidths are required.
    Scopus© Citations 23  979
  • Publication
    Enhancing Bandwidth and Back-Off Range of Doherty Power Amplifier With Modified Load Modulation Network
    This article presents a novel methodology for designing a broadband Doherty power amplifier (DPA) with extended output power back-off (OBO) range. A modified load modulation network (LMN) is proposed to enhance the OBO range and the bandwidth of the DPA simultaneously. Analysis is conducted to explore the relationship between the proposed LMN parameters and the broadband performance under various OBO levels. Generalized design formulas of the LMN parameters are then introduced to offer the broadband solution for arbitrary current ratios and OBO levels. An asymmetric DPA is demonstrated and implemented with gallium nitride (GaN) transistors using the proposed approach. The fabricated DPA operates from 1.4 to 2.5 GHz with 9-dB OBO range. The measured drain efficiency reaches 61%-75.5% at saturation and 44.6%-54.6% at 9-dB OBO within the operating bandwidth. When driven by a 60-MHz modulated signal with 9-dB peak-to-average power ratio (PAPR), the fabricated DPA attains 47.4%-53.5% average drain efficiency and better than -45.5-dBc adjacent channel leakage ratio (ACLR) after digital predistortion.
    Scopus© Citations 28  468