Now showing 1 - 2 of 2
  • Publication
    Energy Efficiency Maximization for C-RANs: Discrete Monotonic Optimization, Penalty, and â„“0-Approximation Methods
    We study downlink of multiantenna cloud radio access networks with finite-capacity fronthaul links. The aim is to propose joint designs of beamforming and remote radio head (RRH)-user association, subject to constraints on users' quality-of-service, limited capacity of fronthaul links and transmit power, to maximize the system energy efficiency. To cope with the limited-capacity fronthaul we consider the problem of RRH-user association to select a subset of users that can be served by each RRH. Moreover, different to the conventional power consumption models, we take into account the dependence of the baseband signal processing power on the data rate, as well as the dynamics of the efficiency of power amplifiers. The considered problem leads to a mixed binary integer program which is difficult to solve. Our first contribution is to derive a globally optimal solution for the considered problem by customizing a discrete branch-reduce-and-bound approach. Since the global optimization method requires a high computational effort, we further propose two suboptimal solutions able to achieve the near optimal performance but with much reduced complexity. To this end, we transform the design problem into continuous (but inherently nonconvex) programs by two approaches: penalty and l 0 -approximation methods. These resulting continuous nonconvex problems are then solved by the successive convex approximation framework. Numerical results are provided to evaluate the effectiveness of the proposed approaches.
    Scopus© Citations 18  311
  • Publication
    Globally Optimal Energy Efficiency Maximization for Capacity-Limited Fronthaul Crans with Dynamic Power Amplifiers’ Efficiency
    A joint beamforming and remote radio head (RRH)-user association design for downlink of cloud radio access networks (CRANs) is considered. The aim is to maximize the system energy efficiency subject to constraints on users' quality-of-service, capacity offronthaullinks and transmit power. Different to the conventional power consumption models, we embrace the dependence of baseband signal processing power on the data rate, and the dynamics of the power amplifiers' efficiency. The considered problem is a mixed Boolean nonconvex program whose optimal solution is difficult to find. As our main contribution, we provide a discrete branch-reduce-and-bound (DBRnB) approach to solve the problem globally. We also make some modifications to the standard DBRnB procedure. Those remarkably improve the convergence performance. Numerical results are provided to confirm the validity of the proposed method.
      470