Now showing 1 - 4 of 4
  • Publication
    The value of seaweed
    TEAGASC researchers are developing zero waste industry processes to generate high-value-added products from seaweed.
      50
  • Publication
    Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae
    This study aims to determine the influence of (1) ultrasound-assisted extraction (UAE), (2) microwave-assisted extraction (MAE) and (3) a combination of ultrasound–microwave-assisted extraction (UMAE) on the yields of fucose-sulphated polysaccharides (FSPs), total soluble carbohydrates and antioxidants extracted from A. nodosum. Scanning electron microscopy (SEM) was used to evaluate the influence of the extraction technologies on the surface of macroalgae while principal component analysis was used to assess the influence of the extraction forces on the yields of compounds. UMAE generated higher yields of compounds compared to UAE and MAE methods separately. The maximum yields of compounds achieved using UMAE were: FSPs (3533.75 ± 55.81 mg fucose/100 g dried macroalgae (dm)), total soluble carbohydrates (10408.72 ± 229.11 mg glucose equivalents/100 g dm) and phenolic compounds (2605.89 ± 192.97 mg gallic acid equivalents/100 g dm). The antioxidant properties of the extracts showed no clear trend or extreme improvements by using UAE, MAE or UMAE. The macroalgal cells were strongly altered by the application of MAE and UMAE, as revealed by the SEM images. Further research will be needed to understand the combined effect of sono-generated and microwave-induced modifications on macroalgae that will allow us to tailor the forces of extraction to target specific molecules.
      75Scopus© Citations 69
  • Publication
    Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds
    This study investigates ultrasound assisted extraction (UAE) process parameters (time, frequency and solvent) to obtain high yields of phlorotannins, flavonoids, total phenolics and associated antioxidant activities from 11 brown seaweed species. Optimised UAE conditions (35 kHz, 30 min and 50% ethanol) significantly improved the extraction yield from 1.5-fold to 2.2-fold in all seaweeds investigated compared to solvent extraction. Using ultrasound, the highest recovery of total phenolics (TPC: 572.3 ± 3.2 mg gallic acid equivalent/g), total phlorotannins (TPhC: 476.3 ± 2.2 mg phloroglucinol equivalent/g) and total flavonoids (TFC: 281.0 ± 1.7 mg quercetin equivalent/g) was obtained from Fucus vesiculosus seaweed. While the lowest recovery of TPC (72.6 ± 2.9 mg GAE/g), TPhC (50.3 ± 2.0 mg PGE/g) and TFC (15.2 ± 3.3 mg QE/g) was obtained from Laminaria digitata seaweed. However, extracts from Fucus serratus obtained by UAE exhibited the strongest 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity (29.1 ± 0.25 mg trolox equivalent/g) and ferric reducing antioxidant power (FRAP) value (63.9 ± 0.74 mg trolox equivalent/g). UAE under optimised conditions was an effective, low-cost and eco-friendly technique to recover biologically active polyphenols from 11 brown seaweed species.
      105Scopus© Citations 56
  • Publication
    Green extraction of proteins, umami and other free amino acids from brown macroalgae Ascophyllum nodosum and Fucus vesiculosus
    Seaweeds are a valuable potential source of protein, as well as free amino acids (FAAs) with umami flavour which are in high demand by the food industry. The most commonly used flavouring agents in the food industry are chemically synthesised and therefore are subject to concerns regarding their safety and associated consumer resistance. This study focuses on the effects of extraction time (1 and 2 h) and solvents (0.1 M HCl, 1% citric acid and deionised water) on the extraction of protein and FAAs including umami FAAs from Irish brown seaweeds (Ascophyllum nodosum and Fucus vesiculosus). Extraction yields were influenced by both the extraction solvent and time, and also varied according to the seaweed used. Both seaweeds investigated were found to be good sources of protein, FAAs including umami FAAs, demonstrating potential application as flavouring agents in the food industry. Overall, the use of green solvents (deionised water and citric acid) resulted in higher recoveries of compounds compared to HCl. The results of this study will facilitate the use of more sustainable solvents in industry for the extraction of proteins and flavouring agents from seaweed.
      74Scopus© Citations 3