Now showing 1 - 6 of 6
  • Publication
    Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units
    Background: The single leg squat (SLS) is a common lower limb rehabilitation exercise. It is also frequently used as an evaluative exercise to screen for an increased risk of lower limb injury. To date athlete / patient SLS technique has been assessed using expensive laboratory equipment or subjective clinical judgement; both of which are not without shortcomings. Inertial measurement units (IMUs) may offer a low cost solution for the objective evaluation of athlete / patient SLS technique. Objectives: The aims of this study were to determine if in combination or in isolation IMUs positioned on the lumbar spine, thigh and shank are capable of: (a) distinguishing between acceptable and aberrant SLS technique; (b) identifying specific deviations from acceptable SLS technique. Methods: Eighty-three healthy volunteers participated (60 males, 23 females, age: 24.68 + / − 4.91 years, height: 1.75 + / − 0.09 m, body mass: 76.01 + / − 13.29 kg). All participants performed 10 SLSs on their left leg. IMUs were positioned on participants’ lumbar spine, left shank and left thigh. These were utilized to record tri-axial accelerometer, gyroscope and magnetometer data during all repetitions of the SLS. SLS technique was labelled by a Chartered Physiotherapist using an evaluation framework. Features were extracted from the labelled sensor data. These features were used to train and evaluate a variety of random-forests classifiers that assessed SLS technique. Results: A three IMU system was moderately successful in detecting the overall quality of SLS performance (77 % accuracy, 77 % sensitivity and 78 % specificity). A single IMU worn on the shank can complete the same analysis with 76 % accuracy, 75 % sensitivity and 76 % specificity. Single sensors also produce competitive classification scores relative to multi-sensor systems in identifying specific deviations from acceptable SLS technique. Conclusions: A single IMU positioned on the shank can differentiate between acceptable and aberrant SLS technique with moderate levels of accuracy. It can also capably identify specific deviations from optimal SLS performance. IMUs may offer a low cost solution for the objective evaluation of SLS performance. Additionally, the classifiers described may provide useful input to an exercise biofeedback application.
      855Scopus© Citations 33
  • Publication
    Evaluating Performance of the Lunge Exercise with Multiple and Individual Inertial Measurement Units
    The lunge is an important component of lower limb rehabilitation, strengthening and injury risk screening. Completing the movement incorrectly alters muscle activation and increases stress on knee, hip and ankle joints. This study sought to investigate whether IMUs are capable of discriminating between correct and incorrect performance of the lunge. Eighty volunteers (57 males, 23 females, age: 24.68± 4.91 years, height: 1.75± 0.094m, body mass: 76.01±13.29kg) were fitted with five IMUs positioned on the lumbar spine, thighs and shanks. They then performed the lunge exercise with correct form and 11 specific deviations from acceptable form. Features were extracted from the labelled sensor data and used to train and evaluate random-forests classifiers. The system achieved 83% accuracy, 62% sensitivity and 90% specificity in binary classification with a single sensor placed on the right thigh and 90% accuracy, 80% sensitivity and 92% specificity using five IMUs. This multi-sensor set up can detect specific deviations with 70% accuracy. These results indicate that a single IMU has the potential to differentiate between correct and incorrect lunge form and using multiple IMUs adds the possibility of identifying specific deviations a user is making when completing the lunge.
      1715
  • Publication
    Evaluating Performance of the Single Leg Squat Exercise with a Single Inertial Measurement Unit
    The single leg squat (SLS) is an important component of lower limb rehabilitation and injury risk screening tools. This study sought to investigate whether a single lumbar-worn IMU is capable of discriminating between correct and incorrect performance of the SLS. Nineteen healthy volunteers (15 males, 4 females, age: 26.09± 3.98 years, height: 1.75± 0.14m, body mass: 75.2±14.2kg) were fitted with a single IMU on the lumbar spine and asked to perform 10 left leg SLS. These repetitions were recorded and labelled by a chartered physiotherapist. Features were extracted from the labelled sensor data. These features were used to train and evaluate a random-forests classifier. The system achieved an average of 92% accuracy, 78% sensitivity and 97% specificity. These results indicate that a single IMU has the potential to differentiate between a correctly and incorrectly completed SLS. This may allow such devices to be used by clinicians to help track rehabilitation of patients and screen for potential injury risks. Furthermore, the classifier described may be a useful input to an exercise biofeedback application.
      567Scopus© Citations 21
  • Publication
    Use of body worn sensors to predict ankle injuries using screening tools
    Background The Single Leg Squat (SLS) is an important screening tool in predicting those at an increased risk of ankle injuries as it relates to landing, running and cutting tasks. However, clinical analysis of this exercise is often completed visually with relatively poor intra-rater reliability. More detailed analysis of SLS completed in biomechanics laboratories is time-consuming and costly. Recent developments in body worn sensors may allow for quick assessments that produce valid and reliable data.Objective To explore a model for leveraging data obtained from wearable sensors to aid in ankle injury risk factor screening.Design A single case study design, with qualitative analysis of quantitative data.Setting University research laboratory.Participants A single participant (female, age = 24 years; height = 158 cm, body mass = 47 kg) was chosen. The participant was familiar with the SLS exercise and had completed it as part of their exercise routine for the past year.Interventions The participant completed 10 left SLS repetitions. These were recorded using the sensors and repetitions where the participant lost balance were noted. Loss of balance was defined as when the subject was unable to maintain single leg stance during the downward or upward phase of the movement and placed their other foot on the ground for support.Main outcome measurements Visual analysis showed signals from the wearable sensors (accelerometer Y and gyroscope Z) were altered when the participant lost their balance compared to signals obtained when the participant maintained balance.Conclusions These preliminary results indicate that body worn sensors may be able to automatize screening tools such as the SLS. An automated system for characterising and quantifying deviations from good form could be developed to aid clinicians and researchers. Such a system would provide objective and reliable data to clinicians and allow researchers to analyse movements quicker and in a more naturalistic setting.
      330
  • Publication
    Leveraging IMU Data for Accurate Exercise Performance Classification and Musculoskeletal Injury Risk Screening
    Inertial measurement units (IMUs) are becoming increasingly prevalent as a method for low cost and portable biomechanical analysis. However, to date they have not tended to be accepted into routine clinical practice. This is often due to the disconnect between translating the data collected by the sensors into meaningful and actionable information for end users. This paper outlines the work completed by our group in attempting to achieve this. We discuss the conceptual framework involved in our work, the methodological approach taken in analysing sensor signals and discuss possible application models. The work completed by our group indicates that IMU based systems have the potential to bridge the gap between laboratory and clinical movement analysis. Future work will focus on collecting a diverse range of movement data and using more sophisticated data analysis techniques to refine systems.
      792Scopus© Citations 25
  • Publication
    Objective Classification of Dynamic Balance Using a Single Wearable Sensor
    (SCITEPRESS – Science and Technology Publications, 2016-11-09) ; ; ; ; ;
    The Y Balance Test (YBT) is one of the most commonly used dynamic balance assessments in clinical and research settings. This study sought to investigate the ability of a single lumbar inertial measurement unit (IMU) to discriminate between the three YBT reach directions, and between pre and post-fatigue balance performance during the YBT. Fifteen subjects (age: 234, weight: 67.58, height: 1758, BMI: 222) were fitted with a lumbar IMU. Three YBTs were performed on the dominant leg at 0, 10 and 20 minutes. A modified Wingate fatiguing intervention was conducted to introduce a balance deficit. This was followed immediately by three post-fatigue YBTs. Features were extracted from the IMU, and used to train and evaluate the random-forest classifiers. Reach direction classification achieved an accuracy of 97.80%, sensitivity of 97.860.89% and specificity of 98.900.56%. Normal and abnormal balance performance, as influenced by fatigue, was classified with an accuracy of 61.90%-71.43%, sensitivity of 61.90%-69.04% and specificity of 61.90%-78.57% depending on which reach direction was chosen. These results demonstrate that a single lumbar IMU is capable of accurately distinguishing between the different YBT reach directions and can classify between pre and post-fatigue balance with moderate levels of accuracy.
    Scopus© Citations 16  822