Now showing 1 - 10 of 27
  • Publication
    Carbon-Doped TiO2 and Carbon, Tungsten-Codoped TiO2 through Sol-Gel Processes in the Presence of Melamine Borate: Reflections through Photocatalysis
    A series of C-doped, W-doped, and C,Wcodoped TiO2 samples have been prepared using modified sol-gel techniques. Reproducible inexpensive C-doping arises from the presence of melamine borate in a sol-gel mixture, whereas W-doping is from the addition of tungstic acid to the sol. The materials have been characterized using elemental analysis, N2 physisorption (BET), thermogravimetric analysis, X-ray diffraction, Raman, X-ray photoelectron, UV-vis spectroscopies, and photocatalytic activity measurements. Doping C and W independently results in an increased absorbance in the visible region of the spectrum with a synergistic effect in increased absorbance when both elements are codoped. The increased visible-light absorbance of the W-doped or codoped materials is not reflected in photocatalytic activity. Visiblelight- induced photocatalytic activity of C-doped material was superior to that of an undoped catalyst, paving the way for its application under only visible-light irradiation conditions. A significant fraction of the spectral red shift commonly observed with doped catalysts might be due to the formation of color centers as a result of defects associated with oxygen vacancies, and bandgap-related narrowing or intragap localization of dopant levels are not the only factors responsible for enhanced visible-light absorption in doped photocatalysts. Furthermore, bandgap narrowing through increases in the energy of the valence band may actually decrease photo-oxidation activity through a curtailment of one route of oxidation.
      849Scopus© Citations 106
  • Publication
    Implicit and explicit solvent models for modelling a bifunctional arene ruthenium hydrogen-storage catalyst: a classical and ab initio molecular simulation study
    Classical and ab initio, density functional theory- and semiempirical-based molecular simulation, including molecular dynamics, have been carried out to compare and contrast the effect of explicit and implicit solvation representation of tetrahydrofuran (THF) solvent on the structural, energetic, and dynamical properties of a novel bifunctional arene ruthenium catalyst embedded therein. Particular scrutiny was afforded to hydrogen-bonding and energetic interactions with the THF liquid. It was found that the presence of explicit THF solvent molecules is required to capture an accurate picture of the catalyst's structural properties, particularly in view of the importance of hydrogen bonding with the surrounding THF molecules. This has implications for accurate modeling of the reactivity of the catalyst.
      314Scopus© Citations 5
  • Publication
    Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface
    We have carried out classical molecular dynamics of various surfaces of TiO2 with its interface with water. We report the geometrical features of the first and second monolayers of water using a Matsui Akaogi (MA) force field for the TiO2 surface and a flexible single point charge model for the water molecules. We show that the MA force field can be applied to surfaces other than rutile (110). It was found that water OH bond lengths, H–O–H bond angles and dipole moments do not vary due to the nature of the surface. However, their orientation within the first and second monolayers suggest that planar rutile (001) and anatase (001) surfaces may play an important role in not hindering removal of the products formed on these surfaces. Also, we discuss the effect of surface termination in order to explain the layering of water molecules throughout the simulation box.
      347Scopus© Citations 78
  • Publication
    Serendipity following attempts to prepare C-doped rutile TiO2
    Attempts to mimic the band gap narrowing seen in anatase TiO2 following C-doping of the lattice where the C arose from a melamine borate precursor were made in situations where the sol-gel mixture was directed towards rutile formation. The formed materials were characterised using XRD, BET, UV-Vis spectroscopy, XPS and TEM and their activities in promoting the photo-degradation of 4-chlorophenol were analysed. It was found that carbon was not doped into the lattice (in contrast to the situations where the sol-gel mixture was directed towards the precipitation of anatase TiO2). In spite of how common reports of the preparation of C-doped TiO2 using sol-gel processes have been, the presence of carbon dopant precursors in a crystallising sol does not necessarily result in the incorporation of C dopants within the final crystalline material, i.e. the nature of the condensing sol is also important. The presence of melamine borate did however increase the proportion of rutile in the final mixture (indeed in the presence of melamine borate the pure rutile phase was formed) and also resulted in materials with higher surface areas (as measured using BET). Furthermore, TEM has shown that rutile TiO2 condensed in the presence of melamine borate had a much more distinct rod-like shape than that condensed in its absence (the latter being more spherical in shape). These materials, notwithstanding the absence of any dopant effect, demonstrated enhanced photocatalytic activity when compared with analogous materials prepared in the absence of melamine borate and this effect is ascribed to both their relatively larger surface areas and their specific shape. Therefore, we have serendipitously come across a method for improving the performance of rutile photocatalysts while searching for a method to generate C-doped rutile TiO2.
      466Scopus© Citations 11
  • Publication
    Activation of hematite nanorod arrays for photoelectrochemical water splitting
    Hematite nanorod arrays were activated through proper control of annealing conditions. The 100-fold improvement in photocurrent was correlated with increased absorption and Sn doping from the tin oxide coated glass substrate. The low onset potential is attributed to a reduction in surface defects, while the morphology is credited for promoting tin diffusion and facilitating electron transport.
      2103Scopus© Citations 151
  • Publication
    Electrochemical characterization of NiO electrodes deposited via a scalable powder microblasting technique
    In this contribution a novel powder coating processing technique (microblasting) for the fabrication of nickel oxide (NiOx) coatings is reported. ~1.2 μm thick NiOx coatings are deposited at 20 mm2 s−1 by the bombardment of the NiOx powder onto a Ni sheet using an air jet at a speed of more than 180 m s−1. Microblast deposited NiOx coatings can be prepared at a high processing rate, do not need further thermal treatment. Therefore, this scalable method is time and energy efficient. The mechano-chemical bonding between the powder particles and substrate results in the formation of strongly adherent NiOx coatings. Microstructural analyses were carried out using SEM, the chemical composition and coatings orientation were determined by XPS and XRD, respectively. The electroactivity of the microblast deposited NiOx coatings was compared with that of NiOx coatings obtained by sintering NiOx nanoparticles previously sprayed onto Ni sheets. In the absence of a redox mediator in the electrolyte, the reduction current of microblast deposited NiOx coatings, when analyzed in anhydrous environment, was two times larger than that produced by higher porosity NiOx nanoparticles coatings of the same thickness obtained through spray coating followed by sintering. Under analogous experimental conditions thin layers of NiOx obtained by using the sol–gel method, ultrasonic spray- and electro-deposition show generally lower current density with respect to microblast samples of the same thickness. The electrochemical reduction of NiOx coatings is controlled by the bulk characteristics of the oxide and the relatively ordered structure of microblast NiOx coatings with respect to sintered NiOx nanoparticles here considered, is expected to increase the electron mobility and ionic charge diffusion lengths in the microblast samples. Finally, the increased level of adhesion of the microblast film on the metallic substrate affords a good electrical contact at the metal/metal oxide interface, and constitutes another reason in support of the choice of microblast as low-cost and scalable deposition method for oxide layers to be employed in electrochemical applications.
      661Scopus© Citations 29
  • Publication
    Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates
    (American Institute of Physics, 2013-03-07) ; ;
    Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the diffusive properties of inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar from 200 K and up to 250-260 K. For mixed H2- THF systems in which there is single H2 occupation of the small cage (labelled ‘1SC 1LC’), we found that no H2 migration occurs. However, for more densely-filled H2-THF and pure- H2 systems, in which there is more than single H2 occupation in the small cage, there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K. The mean square displacements of the hydrogen molecules were fitted to a mathematical model consisting of an anomalous term and a Fickian component, and non-linear regression fitting was conducted to estimate long-time (inter-cage) diffusivities. An approximate Arrhenius temperature relationship for the diffusion coefficient was examined and a rough estimation of the hydrogen hopping energy barrier was calculated for each system.
      376Scopus© Citations 43
  • Publication
    Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates
    (American Institute of Physics, 2012-01-24) ; ;
    Classical equilibrium molecular dynamics(MD) simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled ‘1SC 1LC’), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed ‘1SC 4LC’). However, for the more densely-filled H2-THF and pure- H2 systems, in which there is double H2 occupation in the small cage (dubbed ‘2SC 1LC’ and ‘2SC 4LC’, respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these ‘cage hopping’ events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200 to 250 K range. The ‘breathing modes’, or underlying frequencies governing the variation in the cavities’ radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while a there is some overlap of small cages’ radial breathing modes with lattice acoustic modes.
      510Scopus© Citations 30
  • Publication
    Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cells
    Nickel oxide (NiOx) due to its p-type nature has considerable potential as a photocathodic material in energy conversion devices such as dye-sensitized solar cells (DSSCs). However,NiOx has not been extensively used for this application mainly because of low light harvesting efficiency due to limited dye loading on the coatings. In this study NiOx coatings were deposited using the dc- magnetron sputtering technique from a nickel target in an argon/oxygen plasma. One of the advantages of magnetron sputtering is the ability to control coating properties such as mechanical performance and chemical stoichiometry. It is anticipated that by enhancing the interconnectivity between NiOx particles and by optimizing surface roughness, it may be possible to enhance dye adsorption and increase its ability to absorb visible light. NiOx coatings were deposited onto both silicon wafer and indium tin oxide (ITO) covered glass substrates. The influence of deposition parameters such as pressure, nickel target current and substrate bias voltage were correlated with the coating properties of surface roughness, thickness, crystallographic structure and surface energy. This evaluation was carried out using optical profilometry, spectroscopic ellipsometry, XRD and contact angle measurements respectively. It was observed that deposited coating morphology and roughness were significantly influenced by the deposition parameters. For example increasing the deposition pressure from 0.20 to 0.40 Pa led to an increase in surface roughness (Ra) from 1.6 to 3 nm. Associated with this increase in roughness the surface energy increased from 36 to 61 mN/mm. The NiOx coatings were spectrally sensitized with Rucomplex dye containing -COOH groups as anchoring moieties. The dye adsorptions on NiOx coatings, deposited on ITO substrates, were investigated in transmission mode using UV-vis spectroscopy in the range of 400 – 800 nm. It was observed that for the coatings with the highest surface energy, there was an increase of up to 60 % in the level of dye adsorption. The electroactivity of the NiOx thin films deposited on Ni substrate at 0.4 Pa has been verified through the occurrence of redox processes of reduction and lithium intercalation within the oxide film.
      7249Scopus© Citations 58
  • Publication
    Evaluation of microwave plasma oxidation treatments for the fabrication of photoactive un-doped and carbon-doped TiO2 coatings
    The photoactivity of both un-doped and carbon-doped titanium dioxide (TiO2) coatings has been widely reported. In this paper, the use of a microwave plasma as a novel oxidation treatment for the fabrication of these coatings is evaluated. The photoactivity performance of the microwave plasma-formed coatings is benchmarked against those fabricated through air furnace oxidation as well as those deposited using reactive magnetron sputtering. The un-doped and carbon-doped TiO2 coatings were prepared respectively by microwave plasma-oxidizing titanium metal sheets and sputter deposited titanium carbide thin films. The resulting oxides were characterized using XPS, XRD, FEG-SEM, and optical profilometry. The oxide layer thicknesses achieved over the 15 to 45 minute oxidation times were in the range of 0.15 to 3.44 µm. These coatings were considerably thicker than those obtained by air furnace oxidation. The microwave plasma-formed oxides also exhibited significantly higher surface roughness values compared with the magnetron-sputtered coatings. The photoactivity performance of both un-doped and carbon-doped coatings was assessed using photocurrent density measurements. Comparing the un-doped TiO2 coatings, it was observed that those obtained using the microwave plasma oxidation route yielded photocurrent density measurements that were 4.3 times higher than the TiO2 coatings of the same thickness that were deposited by sputtering. The microwave plasma-oxidized titanium carbide coatings did not perform as well as the un-doped TiO2 probably due to the presence of un-oxidized carbide in the coatings, which reduced their photoactivity.
      1417Scopus© Citations 33