Now showing 1 - 10 of 15
  • Publication
    Mechanisms for thermal conduction in hydrogen hydrate
    (American Institute of Physics, 2012-01-23) ; ;
    Extensive equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal conduction mechanisms via the Green-Kubo approach for (type II) hydrogen hydrate, at 0.05 kbar and between 30 and 250 K, for both lightly-filled H2 hydrates (1s4l) and for more densely-filled H2 systems (2s4l), in which four H2 molecules are present in the large cavities, with respective single- and double-occupation of the small cages. The TIP4P water model was used in conjunction with a fully atomistic hydrogen potential along with long-range Ewald electrostatics. It was found that substantially less damping in guest-host energy transfer is present in hydrogen hydrate as is observed in common type I clathrates (e.g., methane hydrate), but more akin in to previous results for type II and H methane hydrate polymorphs. This gives rise to larger thermal conductivities relative to common type I hydrates, and also larger than type II and H methane hydrate polymorphs, and a more crystal-like temperature dependence of the thermal conductivity.
      625Scopus© Citations 21
  • Publication
    First-principles study of the excited-state properties of coumarin-derived dyes in dye-sensitized solar cells
    Using Time-Dependent Density Functional Theory (TD-DFT), we have investigated the optical properties of dye-sensitized solar cells (DSSCs) comprised of TiO2 nanoparticle sensitized with two coumarins, namely, NKX-2311 and NKX-2593. The two sensitizers (dyes) differ only in their linker moieties and are shown to have different absorption spectra when adsorbed on to the TiO2 surface. Knowledge of different light absorption and charge transfer (CT) behavior within these complexes is useful for further improving the photo-dynamics of newer organic dyes presently being designed and investigated worldwide. Moreover, we have also investigated the effect of deprotonation of the sensitizers' carboxylic groups during adsorption on the titania surface and the excited state electronic properties of the resulting species.
      1277Scopus© Citations 52
  • Publication
    Photo-active and dynamical properties of hematite (Fe2O3)-water interfaces: An experimental and theoretical study
    The dynamical properties of physically and chemically adsorbed water molecules at pristine hematite-(001) surfaces have been studied by means of equilibrium Born–Oppenheimer molecular dynamics (BOMD) in the NVT ensemble at 298 K. The dissociation of water molecules to form chemically adsorbed species was scrutinised, in addition to ‘hopping’ or swapping events of protons between water molecules. Particular foci have been dynamical properties of the adsorbed water molecules and OH− and H3O+ ions, the hydrogen bonds between protons in water molecules and the bridging oxygen atoms at the hematite surface, as well as the interactions between oxygen atoms in adsorbed water molecules and iron atoms at the hematite surface. Experimental results for photoelectrical current generation complement simulation findings of water dissociation.
      455Scopus© Citations 26
  • Publication
    Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage
    Electronic-structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia-borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β-diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia-borane optimized for chemical hydrogen storage and allowing for low-energy dehydrogenation. The interaction of ammonia-borane, and related substituted ammonia-boranes, with a bifunctional η6-arene ruthenium catalyst and associated variants is investigated for dehydrogenation. Interestingly, in a number of cases, hydride-proton transfer from the substituted ammonia-borane to the catalyst undergoes a barrier-less process in the gas phase, with rapid formation of hydrogenated catalyst in the gas phase. Amongst the catalysts considered, N,N-difluoro ammonia-borane and N-phenyl ammonia-borane systems resulted in negative activation energy barriers. However, these types of ammonia-boranes are inherently thermodynamically unstable and undergo barrierless decay in the gas phase. Apart from N,N-difluoro ammonia-borane, the interaction between different types of catalyst and ammonia borane was modeled in the solvent phase, revealing free-energy barriers slightly higher than those in the gas phase. Amongst the various potential candidate Ru-complexes screened, few are found to differ in terms of efficiency for the dehydrogenation (rate-limiting) step. To model dehydrogenation more accurately, a selection of explicit protic solvent molecules was considered, with the goal of lowering energy barriers for H-H recombination. It was found that primary (1°), 2°, and 3° alcohols are the most suitable to enhance reaction rate. © 2014 Wiley Periodicals, Inc.
      447Scopus© Citations 6
  • Publication
    Molecular dynamics study of water in contact with TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface
    We have carried out classical molecular dynamics of various surfaces of TiO2 with its interface with water. We report the geometrical features of the first and second monolayers of water using a Matsui Akaogi (MA) force field for the TiO2 surface and a flexible single point charge model for the water molecules. We show that the MA force field can be applied to surfaces other than Rutile-(110). It was found that water OH bond lengths, H-O-H bond angles and dipole moments do not vary due to the nature of the surface. However, their orientation within the first and second monolayers suggest that planar Rutile-(001) and Anatase-(001) surfaces may play an important role in not hindering removal of the products formed on these surfaces. Also, we discuss the effect of surface termination in order to explain the layering of water molecules throughout the simulation box.
      1128Scopus© Citations 78
  • Publication
    The influence of Ti and Si doping on the structure, morphology and photo-response properties of α-Fe2O3 for efficient water splitting: experiment and first-principle calculations
    Ti- and Si- doping effects on morphology, structure, optical and photo-response of α-Fe2O3 nanoscale coatings from atmospheric-pressure chemical vapour deposition (APCVD) have been studied. Si- and Ti-doping led to larger clusters with finer grains and smaller clusters with larger grains, respectively. Photocurrent performance was increased remarkably by doping, especially Si. Excellent agreement was found for band gaps and optical properties compared to hybrid-Density Functional Theory. Substitutional replacement of Fe by Si shrinks the volume more than Ti-doping; it is conjectured that this affects hopping probability of localised charge-carriers more and leads to enhanced photocurrent activity for Si-doping, supported by experiment.
      554Scopus© Citations 17
  • Publication
    Electrophoretic deposition of poly(3-decylthiophene) onto gold-mounted cadmium selenide nanorods
    Molecular mechanisms of electrophoretic deposition (EPD) of poly(3-decylthiophene) (P3DT) molecules onto vertically aligned cadmium selenide arrays have been studied using large-scale, nonequilibrium molecular dynamics (MD), in the absence and presence of static external electric fields. The field application and larger polymer charges accelerated EPD. Placement of multiple polymers at the same lateral displacement from the surface reduced average deposition times due to “crowding”, giving monolayer coverage. These findings were used to develop and validate Brownian dynamics simulations of multilayer polymer EPD in scaled-up systems with larger inter-rod spacings, presenting a generalized picture in qualitative agreement with random sequential adsorption.
      596Scopus© Citations 6
  • Publication
    Implicit and explicit solvent models for modelling a bifunctional arene ruthenium hydrogen-storage catalyst: a classical and ab initio molecular simulation study
    Classical and ab initio, density functional theory- and semiempirical-based molecular simulation, including molecular dynamics, have been carried out to compare and contrast the effect of explicit and implicit solvation representation of tetrahydrofuran (THF) solvent on the structural, energetic, and dynamical properties of a novel bifunctional arene ruthenium catalyst embedded therein. Particular scrutiny was afforded to hydrogen-bonding and energetic interactions with the THF liquid. It was found that the presence of explicit THF solvent molecules is required to capture an accurate picture of the catalyst's structural properties, particularly in view of the importance of hydrogen bonding with the surrounding THF molecules. This has implications for accurate modeling of the reactivity of the catalyst.
      315Scopus© Citations 5
  • Publication
    Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates
    (American Institute of Physics, 2013-03-07) ; ;
    Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the diffusive properties of inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar from 200 K and up to 250-260 K. For mixed H2- THF systems in which there is single H2 occupation of the small cage (labelled ‘1SC 1LC’), we found that no H2 migration occurs. However, for more densely-filled H2-THF and pure- H2 systems, in which there is more than single H2 occupation in the small cage, there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K. The mean square displacements of the hydrogen molecules were fitted to a mathematical model consisting of an anomalous term and a Fickian component, and non-linear regression fitting was conducted to estimate long-time (inter-cage) diffusivities. An approximate Arrhenius temperature relationship for the diffusion coefficient was examined and a rough estimation of the hydrogen hopping energy barrier was calculated for each system.
      381Scopus© Citations 43
  • Publication
    Dynamical and energetic properties of hydrogen and hydrogen–tetrahydrofuran clathrate hydrates
    Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the dynamical and energetic properties in hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 30 and 200K and 0.05 kbar, and also at intermediate temperatures, using SPC/E and TIP4P-2005 water models. The potential model is found to have a large impact on overall density, with the TIP4P-2005 systems being on average 1 % more dense than their SPC/E counterparts, due to the greater guest-host interaction energy. For the lightly-filled mixed H2-THF system, in which there is single H2 occupation of the small cage (1s1l), we find that the largest contribution to the interaction energy of both types of guest is the van der Waals component with the surrounding water molecules in the constituent cavities. For the more densely-filled mixed H2-THF system, in which there is double H2 occupation in the small cage (2s1l), we find that there is no dominant component (i.e., van der Waals or Coulombic) in the H2 interaction energy with the rest of the system, but for the THF molecules, the dominant contribution is again the van der Waals interaction with the surrounding cage-water molecules; again, the Coulombic component increases in importance with increasing temperature. The lightly-filled pure H2 hydrate (1s4l) system exhibits a similar pattern vis-à-vis the H2 interaction energy as for the lightly-filled mixed H2-THF system, and for the more densely-filled pure H2 system (2s4l), there is no dominant component of interaction energy, due to the multiple occupancy of the cavities. By consideration of Kubic harmonics, there is some evidence of preferential alignment of the THF molecules, particularly at 200 K; this was found to arise at higher temperatures due to transient hydrogen bonding of the oxygen atom in THF molecules with the surrounding cage-water molecules.
      423Scopus© Citations 20