Options
Ó Náraigh, Lennon
Preferred name
Ó Náraigh, Lennon
Official Name
Ó Náraigh, Lennon
Research Output
Now showing 1 - 3 of 3
- PublicationA Review of Applied Mathematics(Irish Applied Mathematics Teachers Association, 2015-12)
; Applied Mahtematics is a subject which deals with problmes arising inthe physical, life, and social sciences as well as in engineering and provides a broad body of knowledge for use in a wide spectrum of research and insdustry. Applied Mathematics is an important school subject which builds students' mathematical and problem solving skills. The subject has remained on the periphery of school time-tables and, without the commitment and enthusiasm of Applied Maths teachers, would likely be omitted from most school curricula.107 - PublicationA Geometric Diffuse-Interface Method for Droplet SpreadingThis paper exploits the theory of geometric gradient flows to introduce an alternative regularization of the thin-film equation valid in the case of large-scale droplet spreading-the geometric diffuse-interface method. The method possesses some advantages when compared with the existing models of droplet spreading, namely the slip model, the precursor-film method and the diffuse-interface model. These advantages are discussed and a case is made for using the geometric diffuse-interface method for the purpose of numerical simulations. The mathematical solutions of the geometric diffuse interface method are explored via such numerical simulations for the simple and well-studied case of large-scale droplet spreading for a perfectly wetting fluid-we demonstrate that the new method reproduces Tanner's Law of droplet spreading via a simple and robust computational method, at a low computational cost. We discuss potential avenues for extending the method beyond the simple case of perfectly wetting fluids.
207Scopus© Citations 1 - PublicationTravelling-wave spatially periodic forcing of asymmetric binary mixturesWe study travelling-wave spatially periodic solutions of a forced Cahn–Hilliard equation. This is a model for phase separation of a binary mixture, subject to external forcing. We look at arbitrary values of the mean mixture concentration, corresponding to asymmetric mixtures (previous studies have only considered the symmetric case). We characterize in depth one particular solution which consists of an oscillation around the mean concentration level, using a range of techniques, both numerical and analytical. We determine the stability of this solution to small-amplitude perturbations. Next, we use methods developed elsewhere in the context of shallow-water waves to uncover a (possibly infinite) family of multiple-spike solutions for the concentration profile, which linear stability analysis demonstrates to be unstable. Throughout the work, we perform thorough parametric studies to outline for which parameter values the different solution types occur.
302Scopus© Citations 1