Now showing 1 - 1 of 1
  • Publication
    Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates
    Photoreduction on a periodically proton exchanged ferroelectric crystal leads to the formation of periodic metallic nanostructures on the surface. By varying the depth of the proton exchange (PE) from 0.59 to 3.10 µm in congruent lithium niobate crystals, the width of the lateral diffusion region formed by protons diffusing under the mask layer, can be controlled. The resulting deposition occurs in the PE region with the shallowest PE depth, and preferentially in the lateral diffusion region for greater PE depths. PE depth-control provides a route for the fabrication of complex metallic nanostructures with controlled dimensions on chemically patterned ferroelectric templates.
      436Scopus© Citations 9