Now showing 1 - 3 of 3
  • Publication
    Quantification and characterization of energy flexibility in the residential building sector
    (International Building Performance Association, 2019-09-04) ; ; ; ; ;
    Demand response can enable residential consumers to take advantage of control signals and/or financial incentives to adjust the use of their resources at strategic times. These resources usually refer to energy consumption, locally distributed electricity generation, and energy storage. The building structural mass has an inherent potential either to modify consumption or to be used as a storage medium. In this paper, the energy flexibility potential of a residential building thermal mass for the winter design day is investigated. Various active demand response strategies are assessed using two flexibility indicators: the storage efficiency and storage capacity. Using simulation, it is shown that the available capacity and efficiency associated with active demand response actions depend on thermostat setpoint modulation, demand response event duration, heating system rated power and current consumption.
      250
  • Publication
    On the assessment and control optimisation of demand response programs in residential buildings
    The ability to control and optimise energy consumption at end-user level is of increasing interest as a means to achieve a balance between supply and demand, particularly when large penetration of distributed renewable energy sources is being considered. Demand Response programs consist of a series of externally-driven control strategies aimed at adapting consumer end-use load to specific grid requirements. In a demand response scenario, a network of connected systems can be exploited to activate balancing strategies, to provide demand flexibility during periods of high stress for the grid. However, the widespread deployment of demand response programs in the building sector still faces significant challenges. Smart technology deployment, the lack of common standardised assessment procedures and metrics, the absence of established regulatory frameworks are among the main obstacles limiting the development of portfolios of competitive flexibility assets. The residential sector is even more affected by these challenges due to a marginal economic case, the issue of long term harmonisation of hardware and software infrastructure and the influence of the end-user behaviour and preferences on energy consumption. The present paper provides a review on the current developments of the Demand Response programs, with specific reference to the residential building sector. Methodologies and procedures for assessing building energy flexibility and Demand Response programs are described with a special focus on numerical models and available control algorithms. Moreover, markets schemes and social aspects - such as technology acceptance and awareness - and their influence on smart control technologies and algorithms are discussed. Current research gaps and challenges are identified and analysed to provide guidance for future research activities.
      358Scopus© Citations 91
  • Publication
    Towards Standardising Market-Independent Indicators for Quantifying Energy Flexibility in Buildings
    Buildings are increasingly being seen as a potential source of energy flexibility to the smart grid as a form of demand side management. Indicators are required to quantify the energy flexibility available from buildings, enabling a basis for a contractual framework between the relevant stakeholders such as end users, aggregators and grid operators. In the literature, there is a lack of consensus and standardisation in terms of approaches and indicators for quantifying energy flexibility. In the present paper, current approaches are reviewed and the most recent and relevant market independent indicators are compared through analysis of four different case studies comprising varying building types, climates and control schemes to assess their robustness and applicability. Of the indicators compared, certain indicators are found to be more suitable for use by the end user when considering energy and carbon dioxide emission reductions. Other indicators are more useful for the grid operator. The recommended indicators are found to be robust to different demand response contexts, such as type of energy flexibility, control scheme, climate and building types. They capture the provided flexibility quantity, its shifting efficiency and rebound effect. A final cost index is also recommended given specific market conditions to capture the cost of a building providing energy flexibility.
      287Scopus© Citations 36