Now showing 1 - 5 of 5
  • Publication
    Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus
    There is a need for diagnostic biomarkers of epilepsy and status epilepticus to support clinical examination, electroencephalography and neuroimaging. Extracellular microRNAs may be potentially ideal biomarkers since some are expressed uniquely within specific brain regions and cell types. Cerebrospinal fluid offers a source of microRNA biomarkers with the advantage of being in close contact with the target tissue and sites of pathology. Here we profiled microRNA levels in cerebrospinal fluid from patients with temporal lobe epilepsy or status epilepticus, and compared findings to matched controls. Differential expression of 20 microRNAs was detected between patient groups and controls. A validation phase included an expanded cohort and samples from patients with other neurological diseases. This identified lower levels of miR-19b in temporal lobe epilepsy compared to controls, status epilepticus and other neurological diseases. Levels of miR-451a were higher in status epilepticus compared to other groups whereas miR-21-5p differed in status epilepticus compared to temporal lobe epilepsy but not to other neurological diseases. Targets of these microRNAs include proteins regulating neuronal death, tissue remodelling, gliosis and inflammation. The present study indicates cerebrospinal fluid contains microRNAs that can support differential diagnosis of temporal lobe epilepsy and status epilepticus from other neurological and non-neurological diseases.
      275Scopus© Citations 76
  • Publication
    EpimiRBase: a comprehensive database of microRNA-epilepsy associations
    MicroRNAs are short non-coding RNA which function to fine-tune protein levels in all cells. This is achieved mainly by sequence-specific binding to 3′ untranslated regions of target mRNA. The result is post-transcriptional interference in gene expression which reduces protein levels either by promoting destabilisation of mRNA or translational repression. Research published since 2010 shows that microRNAs are important regulators of gene expression in epilepsy. A series of microRNA profiling studies in rodent and human tissue has revealed that epilepsy is associated with wide ranging changes to microRNA levels in the brain. These are thought to influence processes including cell death, inflammation and re-wiring of neuronal networks. MicroRNAs have also been identified in the blood after injury to the brain and therefore may serve as biomarkers of epilepsy. EpimiRBase is a manually curated database for researchers interested in the role of microRNAs in epilepsy. The fully searchable database includes information on up- and down-regulated microRNAs in the brain and blood, as well as functional studies, and covers both rodent models and human epilepsy.
      363Scopus© Citations 34
  • Publication
    Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy
    Background: There are no blood-based molecular biomarkers of temporal lobe epilepsy (TLE) to support clinical diagnosis. MicroRNAs are short noncoding RNAs with strong biomarker potential due to their cell-specific expression, mechanistic links to brain excitability, and stable detection in biofluids. Altered levels of circulating microRNAs have been reported in human epilepsy, but most studies collected samples from one clinical site, used a single profiling platform or conducted minimal validation. Method: Using a case-control design, we collected plasma samples from video-electroencephalogram-monitored adult TLE patients at epilepsy specialist centers in two countries, performed genome-wide PCR-based and RNA sequencing during the discovery phase and validated findings in a large (>250) cohort of samples that included patients with psychogenic non-epileptic seizures (PNES). Findings: After profiling and validation, we identified miR-27a-3p, miR-328-3p and miR-654-3p with biomarker potential. Plasma levels of these microRNAs were also changed in a mouse model of TLE but were not different to healthy controls in PNES patients. We determined copy number of the three microRNAs in plasma and demonstrate their rapid detection using an electrochemical RNA microfluidic disk as a prototype point-of-care device. Analysis of the microRNAs within the exosome-enriched fraction provided high diagnostic accuracy while Argonaute-bound miR-328-3p selectively increased in patient samples after seizures. In situ hybridization localized miR-27a-3p and miR-328-3p within neurons in human brain and bioinformatics predicted targets linked to growth factor signaling and apoptosis. Interpretation: This study demonstrates the biomarker potential of circulating microRNAs for epilepsy diagnosis and mechanistic links to underlying pathomechanisms.
      246Scopus© Citations 60
  • Publication
    High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex and Sample Timing-Related Variation in Plasma of Healthy Volunteers
    MicroRNAs are a class of small non-coding RNA that regulate gene expression at a posttranscriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease opens up a new field for biomarker study. However, diurnal and day-to-day variation in plasma microRNA levels, and differential regulation between males and females, may affect biomarker stability. A QuantStudio 12K Flex Real-Time PCR System was used to profile plasma microRNA levels using OpenArray in male and female healthy volunteers, in the morning and afternoon, and at four time points over a one month period. Using this system we were able to run four OpenArray plates in a single run, the equivalent of 32 traditional 384-well qPCR plates or 12,000 data points. Up to 754 microRNAs can be identified in a single plasma sample in under two hours. 108 individual microRNAs were identified in at least 80% of all our samples which compares favourably with other reports of microRNA profiles in serum or plasma in healthy adults. Many of these microRNAs, including miR-16-5p, miR-17-5p, miR-19a-3p, miR-24-3p, miR-30c-5p, miR-191-5p, miR-223-3p and miR-451a are highly expressed and consistent with previous studies using other platforms. Overall, microRNA levels were very consistent between individuals, males and females, and time points and we did not detect significant differences in levels of microRNAs. These results suggest the suitability of this platform for microRNA profiling and biomarker discovery and suggest minimal confounding influence of sex or sample timing. However, the platform has not been subjected to rigorous validation which must be demonstrated in future biomarker studies where large differences may exist between disease and control samples.
      220Scopus© Citations 25
  • Publication
    Plasma microRNA levels in male and female children with cystic fibrosis
    A gender gap exists in cystic fibrosis (CF). Here we investigate whether plasma microRNA expression profiles differ between the sexes in CF children. MicroRNA expression was quantified in paediatric CF plasma (n = 12; six females; Age range:1–6; Median Age: 3; 9 p.Phe508del homo- or heterozygotes) using TaqMan OpenArray Human miRNA Panels. Principal component analysis indicated differences in male versus female miRNA profiles. The miRNA array analysis revealed two miRNAs which were significantly increased in the female samples (miR-885-5p; fold change (FC):5.07, adjusted p value: 0.026 and miR-193a-5p; FC:2.6, adjusted p value: 0.031), although only miR-885-5p was validated as increased in females using specific qPCR assay (p < 0.0001). Gene ontology analysis of miR-885-5p validated targets identified cell migration, motility and fibrosis as processes potentially affected, with RAC1-mediated signalling featuring significantly. There is a significant increase in miR-885-5p in plasma of females versus males with CF under six years of age.
      85Scopus© Citations 7