Now showing 1 - 6 of 6
  • Publication
    Neuron Sub-Populations with Different Elongation Rates and DCC Dynamics Exhibit Distinct Responses to Isolated Netrin-1 Treatment
    (American Chemical Society, 2015) ; ;
    Correct wiring of the nervous system requires guidance cues, diffusible or substrate-bound proteins that steer elongating axons to their target tissues. Netrin-1, the best characterized member of the Netrins family of guidance molecules, is known to induce axon turning and modulate axon elongation rate; however, the factors regulating the axonal response to Netrin-1 are not fully understood. Using microfluidics, we treated fluidically isolated axons of mouse primary cortical neurons with Netrin-1 and characterized axon elongation rates, as well as the membrane localization of deleted in colorectal cancer (DCC), a well-established receptor of Netrin-1. The capacity to stimulate and observe a large number of individual axons allowed us to conduct distribution analyses, through which we identified two distinct neuron subpopulations based on different elongation behavior and different DCC membrane dynamics. Netrin-1 reduced the elongation rates in both subpopulations, where the effect was more pronounced in the slow growing subpopulation. Both the source of Ca2+ influx and the basal cytosolic Ca2+ levels regulated the effect of Netrin-1, for example, Ca2+ efflux from the endoplasmic reticulum due to the activation of Ryanodine channels blocked Netrin-1-induced axon slowdown. Netrin-1 treatment resulted in a rapid membrane insertion of DCC, followed by a gradual internalization. DCC membrane dynamics were different in the central regions of the growth cones compared to filopodia and axon shafts, highlighting the temporal and spatial heterogeneity in the signaling events downstream of Netrin-1. Cumulatively, these results demonstrate the power of microfluidic compartmentalization and distribution analysis in describing the complex axonal Netrin-1 response.
      581Scopus© Citations 11
  • Publication
    Charge and topography patterned lithium niobate provides physical cues to fluidically isolated cortical axons
    In vitro devices that combine chemotactic and physical cues are needed for understanding how cells integrate different stimuli. We explored the suitability of lithium niobate (LiNbO3), a transparent ferroelectric material that can be patterned with electrical charge domains and micro/nanotopography, as a neural substrate. On flat LiNbO3 z-surfaces with periodically alternating charge domains, cortical axons are partially aligned with domain boundaries. On submicron-deep etched trenches, neurites are aligned with the edges of the topographical features. Finally, we bonded a bicompartmental microfluidic chip to LiNbO3 surfaces patterned by etching, to create isolated axon microenvironments with predefined topographical cues. LiNbO3 is shown to be an emerging neuron culture substrate with tunable electrical and topographical properties that can be integrated with microfluidic devices, suitable for studying axon growth and guidance mechanisms under combined topographical/chemical stimuli.
      394Scopus© Citations 16
  • Publication
    Magnetic Tweezers-Based Force Clamp Reveals Mechanically Distinct apCAM Domain Interactions
    Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in cell-cell interactions during nervous system development and function. The Aplysia CAM (apCAM), an invertebrate IgCAM, shares structural and functional similarities with vertebrate NCAM and therefore has been considered as the Aplysia homolog of NCAM. Despite these similarities, the binding properties of apCAM have not been investigated thus far. Using magnetic tweezers, we applied physiologically relevant, constant forces to apCAM-coated magnetic particles interacting with apCAM-coated model surfaces and characterized the kinetics of bond rupture. The average bond lifetime decreased with increasing external force, as predicted by theoretical considerations. Mathematical simulations suggest that the apCAM homophilic interaction is mediated by two distinct bonds, one involving all five immunoglobulin (Ig)-like domains in an antiparallel alignment and the other involving only two Ig domains. In summary, this study provides biophysical evidence that apCAM undergoes homophilic interactions, and that magnetic tweezers-based, force-clamp measurements provide a rapid and reliable method for characterizing relatively weak CAM interactions.
      397Scopus© Citations 14
  • Publication
    A microfluidic dual gradient generator for conducting cell-based drug combination assays
    We present a microfluidic chip that generates linear concentration gradients of multiple solutes that are orthogonally-aligned to each other. The kinetics of gradient formation was characterized using a fluorescent tracer matching the molecular weight of small inhibitory drugs. Live-cell signalling and motility experiments were conducted to demonstrate the potential uses and advantages of the device. A431 epidermoid carcinoma cells, where EGF induces apoptosis in a concentration-dependent manner, were simultaneously exposed to gradients of MEK inhibitor and EGF receptor (EGFR) inhibitor. By monitoring live caspase activation in the entire chip, we were able to quickly assess the combinatorial interaction between MEK and EGFR pathways, which otherwise would require costly and time consuming titration experiments. We also characterized the motility and morphology of MDA-MB-231 breast cancer cells exposed to orthogonal gradients of EGF and EGFR inhibitor. The microfluidic chip not only permitted the quantitative analysis of a population of cells exposed to drug combinations, but also enabled the morphological characterization of individual cells. In summary, our microfluidic device, capable of establishing concentration gradients of multiple compounds over a group of cells, facilitates and accelerates in vitro cell biology experiments, such as those required for cell-based drug combination assays.
      433Scopus© Citations 20
  • Publication
    Mechanochemical Stimulation of MCF7 Cells with Rod-Shaped Fe-Au Janus Particles Induces Cell Death through Paradoxical Hyperactivation of ERK
    Multifunctional nanoparticles that actively target-specific tissues are studied for cancer diagnosis and treatment. Magnetically and optically active particles are of particular interest because they enable multiple imaging modalities and physically modulated therapies, such as magnetic hyperthermia. Fe–Au nanorods are synthesized that have a long iron segment, coated with polyethylene glycol, and a short gold tip functionalized with heregulin (HRG), a known ligand of ErbB family of receptors. HRG–nanorods preferentially target MCF7 cells relative to MDA-MB-231 cells, as demonstrated in a novel microfluidics device. Targeting rates of these classical breast cancer cells correlate with their differential expression of ErbB2/3 receptors. HRG–nanorod binding stimulates the extracellular signal-regulated kinase 1/2 (ERK) phosphorylation in MCF7 cells. The increase in ERK phosphorylation is linked to 'active zones,' dynamic regions in the cell periphery, which exhibit higher rates of particle binding than the rest of the cell. Periodically stretching cells using magnetic tweezers further activates ERK, which leads to cell death in cells co-treated with B-Raf inhibitors, through ERK hyperactivation. Although to a lesser extent, cell death is also achieved through magnetic hyperthermia. These results demonstrate nanoscale targeting and localized mechanochemical treatment of specific cancer cell lines based on their receptor expression using multifunctional nanoparticles.
      618Scopus© Citations 25
  • Publication
    Neuronal Cell Bodies Remotely Regulate Axonal Growth Response to Localized Netrin-1 Treatment via Second Messenger and DCC Dynamics
    Netrin-1 modulates axonal growth direction and speed. Its best characterized receptor, Deleted in Colorectal Cancer (DCC), is localized to growth cones, but also observed in the cell bodies. We hypothesized that cell bodies sense Netrin-1 and contribute to axon growth rate modulation, mediated by the second messenger system. We cultured mouse cortical neurons in microfluidic devices to isolate distal axon and cell body microenvironments. Compared to isolated axonal treatment, global Netrin-1 treatment decreased the axon elongation rate and affected the dynamics of total and membranous DCC, calcium, and cyclic nucleotides. Signals induced by locally applied Netrin-1 propagated in both anterograde and retrograde directions, demonstrated by the long-range increase in DCC and by the increased frequency of calcium transients in cell bodies, evoked by axonal Netrin-1. Blocking the calcium efflux from endoplasmic reticulum suppressed the membranous DCC response. Our findings support the notion that neurons sense Netrin-1 along their entire lengths in making axonal growth decisions.
      284Scopus© Citations 11