Now showing 1 - 10 of 30
  • Publication
    T Tauri Jet Physics Resolved Near the Launching Region with the Hubble Space Telescope
    We present an analysis of the gas physics at the base of jets from five T Tauri stars based on high angular resolution optical spectra, using the Hubble Space Telescope Imaging Spectrograph (HST STIS). The spectra refer to a region within 100 AU of the star, i.e., where the collimation of the jet has just taken place. We form position-velocity (PV) images of the line ratios to get a global picture of the flow excitation. We then apply a specialized diagnostic technique to find the electron density, ionization fraction, electron temperature, and total density. Our results are in the form of PV maps of the obtained quantities, in which the gas behavior is resolved as a function of both radial velocity and distance from the jet axis. They highlight a number of interesting physical features of the jet collimation region, including regions of extremely high density, asymmetries with respect to the axis, and possible shock signatures. Finally, we estimate the jet mass and angular momentum outflow rates, both of which are fundamental parameters in constraining models of accretion-ejection structures, particularly if the parameters can be determined close to the jet foot point. Comparing mass flow rates for cases where the mass accretion rate is available in the literature (i.e., for DG Tau, RW Aur, and CW Tau) reveals a mass ejection-to-accretion ratio of 0.01-0.07. Finally, where possible (i.e., for DG Tau and CW Tau), both mass and angular momentum outflow rates are resolved into higher and lower velocity jet material. For the clearer case of DG Tau, this reveals that the more collimated higher velocity component plays a dominant role in mass and angular momentum transport.
      234Scopus© Citations 72
  • Publication
    The circumstellar environment of HD 50138 revealed by VLTI/AMBER at high angular resolution
    Context. HD 50138 is a Herbig B[e] star with a circumstellar disc detected at infrared and millimeter wavelength. Its brightness makes it a good candidate for near-infrared interferometry observations. Aims. We aim to resolve, spatially and spectrally, the continuum and hydrogen emission lines in the 2.12–2.47 micron region, to shed light on the immediate circumstellar environment of the star. Methods. VLTI/AMBER K-band observations provide spectra, visibilities, differential phases, and closure phases along three long baselines for the continuum, and H I emission in Brγ and five high-n Pfund lines. By computing the pure line visibilities, we derive the angular size of the different line-emitting regions. A simple local thermodynamic equilibrium (LTE) model was created to constrain the physical conditions of H I emitting region. Results. The continuum region cannot be reproduced by a geometrical two-dimensional (2D) elongated Gaussian fitting model. We estimate the size of the region to be 1 au. We find the detected hydrogen lines (Brγ and Pfund lines) come from a more compact region of size 0.4 au. The Brγ line exhibits an S-shaped differential phase, indicative of rotation. The continuum and Brγ line closure phases show offsets of ~ −25 ± 5° and 20 ± 10° respectively. This is evidence of an asymmetry in their origin, but with opposing directions. We find that we cannot converge on constraints for the HI physical parameters without a more detailed model. Conclusions. Our analysis reveals that HD 50138 hosts a complex circumstellar environment. Its continuum emission cannot be reproduced by a simple disc brightness distribution. Similarly, several components must be evoked to reproduce the interferometric observables within the Brγ line. Combining the spectroscopic and interferometric data of the Brγ and Pfund lines favours an origin in a wind region with a large opening angle. Finally, although we cannot exclude the possibility that HD 50138 is a young star our results point to an evolved source.
      301Scopus© Citations 2
  • Publication
    Organic molecules in the protoplanetary disk of DG Tauri revealed by ALMA
    Context. Planets form in protoplanetary disks and inherit their chemical compositions. Aims. It is thus crucial to map the distribution and investigate the formation of simple organics, such as formaldehyde and methanol, in protoplanetary disks. Methods. We analyze ALMA observations of the nearby disk-jet system around the T Tauri star DG Tau in the o-H2CO 31, 2-21, 1 and CH3OH 3-2, 2-4-1, 4 E, 50, 5-40, 4 A transitions at an unprecedented resolution of $ ∼0.15 $, i.e., ∼18 au at a distance of 121 pc. Results. The H2CO emission originates from a rotating ring extending from ∼40 au with a peak at ∼62 au, i.e., at the edge of the 1.3 mm dust continuum. CH3OH emission is not detected down to an rms of 3 mJy beam-1 in the 0.162 km s-1 channel. Assuming an ortho-to-para ratio of 1.8-2.8 the ring-and disk-height-averaged H2CO column density is ∼0.3-4 × 1014 cm-2, while that of CH3OH is < 0.04-0.7 × 1014 cm-2. In the inner 40 au no o-H2CO emission is detected with an upper limit on its beam-averaged column density of ∼0.5-6 × 1013 cm-2. Conclusions. The H2CO ring in the disk of DG Tau is located beyond the CO iceline (RCO ∼ 30 au). This suggests that the H2CO abundance is enhanced in the outer disk due to formation on grain surfaces by the hydrogenation of CO ice. The emission peak at the edge of the mm dust continuum may be due to enhanced desorption of H2CO in the gas phase caused by increased UV penetration and/or temperature inversion. The CH3OH/H2CO abundance ratio is < 1, in agreement with disk chemistry models. The inner edge of the H2CO ring coincides with the radius where the polarization of the dust continuum changes orientation, hinting at a tight link between the H2CO chemistry and the dust properties in the outer disk and at the possible presence of substructures in the dust distribution.
    Scopus© Citations 29  313
  • Publication
    A chemical survey of exoplanets with ARIEL
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
    Scopus© Citations 255  267
  • Publication
    X-RED: A satellite mission concept to detect early universe gamma ray bursts
    Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z ∼ 10 to 30), but that current missions such as HETE2 and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from the science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.
      192
  • Publication
    Mirror, mirror on the outflow cavity wall: Near-infrared CO overtone disc emission of the high-mass YSO IRAS 11101-5829
    Aims. The inner regions of high-mass protostars are often invisible in the near-infrared, obscured by thick envelopes and discs. We aim to investigate the inner gaseous disc of IRAS 11101-5829 through scattered light from the outflow cavity walls. Methods. We observed the immediate environment of the high-mass young stellar object IRAS 11101-5829 and the closest knots of its jet, HH135-136, with the integral field unit VLT/SINFONI. We also retrieved archival data from the high-resolution long-slit spectrograph VLT/X-shooter. We analysed imaging and spectroscopic observations to discern the nature of the near-infrared CO emission. Results. We detect the first three bandheads of the υ = 2−0 CO vibrational emission for the first time in this object. It is coincident with continuum and Brγ emission and extends up to ~10 000 au to the north-east and ~10 000 au to the south-west. The line profiles have been modelled as a Keplerian rotating disc assuming a single ring in local thermodynamic equilibrium. The model output gives a temperature of ~3000 K, a CO column density of ~1 × 1022 cm−2, and a projected Keplerian velocity vK sin idisc ~ 25 km s−1, which is consistent with previous modelling in other high-mass protostars. In particular, the low value of vK sin idisc suggests that the disc is observed almost face-on, whereas the well-constrained geometry of the jet imposes that the disc must be close to edge-on. This apparent discrepancy is interpreted as the CO seen reflected in the mirror of the outflow cavity wall. Conclusions. From both jet geometry and disc modelling, we conclude that all the CO emission is seen through reflection by the cavity walls and not directly. This result implies that in the case of highly embedded objects, as for many high-mass protostars, line profile modelling alone might be deceptive and the observed emission could affect the derived physical and geometrical properties; in particular the inclination of the system can be incorrectly interpreted.
    Scopus© Citations 11  237
  • Publication
    Jet rotation investigated in the near-ultraviolet with the Hubble Space Telescope imaging spectrograph
    We present results of the second phase of our near-ultraviolet investigation into protostellar jet rotation using the Hubble Space Telescope Imaging Spectrograph. We obtain long-slit spectra at the base of five T Tauri jets to determine if there is a difference in radial velocity between the jet borders which may be interpreted as a rotation signature. These observations are extremely challenging and push the limits of current instrumentation, but have the potential to provide long-awaited observational support for the magnetocentrifugal mechanism of jet launching in which jets remove angular momentum from protostellar systems. We successfully detect all five jet targets (from RW Aur, HN Tau, DP Tau, and CW Tau) in several near-ultraviolet emission lines, including the strong Mg II doublet. However, only RW Aur's bipolar jet presents a sufficiently high signal-to-noise ratio to allow for analysis. The approaching jet lobe shows a difference of 10kms-1 in a direction which agrees with the disk rotation sense, but is opposite to previously published optical measurements for the receding jet. The near-ultraviolet difference is not found six months later, nor is it found in the fainter receding jet. Overall, in the case of RW Aur, differences are not consistent with a simple jet rotation interpretation. Indeed, given the renowned complexity and variability of this system, it now seems likely that any rotation signature is confused by other influences, with the inevitable conclusion that RW Aur is not suited to a jet rotation study. © 2012. The American Astronomical Society. All rights reserved.
    Scopus© Citations 28  244
  • Publication
    Rotation of jets from young stars: New clues from the Hubble Space Telescope Imaging Spectrograph
    We report findings from the first set of data in a current survey to establish conclusively whether jets from young stars rotate. We observed the bipolar jets from the T Tauri stars TH 28 and RW Aur and the blueshifted jet from T Tauri star LkHα 321, using the Hubble Space Telescope Imaging Spectrograph. Forbidden emission lines show distinct and systematic velocity asymmetries of 10-25 (±5) km s-1 at a distance of 0″.3 from the source, representing a (projected) distance of ≈40 AU along the jet in the case of RW Aur, ≈50 AU for TH 28, and 165 AU in the case of LkHα 321. These velocity asymmetries are interpreted as rotation in the initial portion of the jet where it is accelerated and collimated. For the bipolar jets, both lobes appear to rotate in the same direction. Values obtained were in agreement with the predictions of MHD disk-wind models. Finally, we determine, from derived toroidal and poloidal velocities, values for the distance from the central axis of the footpoint for the jet's low-velocity component of ≈0.5-2 AU, consistent with the models of magnetocentrifugal launching.
    Scopus© Citations 147  199
  • Publication
    Searching for jet rotation in Class 0/I sources observed with GEMINI/GNIRS
    Context. In recent years, there has been a number of detections of gradients in the radial velocity profile across jets from young stars. The significance of these results is considerable. They may be interpreted as a signature of jet rotation about its symmetry axis, thereby representing the only existing observational indications supporting the theory that jets extract angular momentum from star-disk systems. However, the possibility that we are indeed observing jet rotation in pre-main sequence systems is undergoing active debate. Aims. To test the validity of a rotation argument, we must extend the survey to a larger sample, including younger sources. Methods. We present the latest results of a radial velocity analysis on jets from Class 0 and I sources, using high resolution data from the infrared spectrograph GNIRS on GEMINI South. We obtained infrared spectra of protostellar jets HH34, HH 111-H, HH 212 NK1 and SK1. Results. The [Fe II] emission was unresolved in all cases and so Doppler shifts across the jet width could not be accessed. The H2 emission was resolved in all cases except HH 34. Doppler profiles across the molecular emission were obtained, and gradients in radial velocity of typically 3 km s-1 identified. Conclusions. Agreement with previous studies implies they may be interpreted as jet rotation, leading to toroidal velocity and angular momentum flux estimates of 1.5 km s-1 and 1 × 10-5 Ṁ yr-1 AU km s-1 respectively. However, caution is needed. For example, emission is asymmetric across the jets from HH 212 suggesting a more complex interpretation is warranted. Furthermore, observations for HH 212 and HH 111-H are conducted far from the source implying external influences are more likely to confuse the intrinsic flow kinematics. These observations demonstrate the difficulty of conducting this study from the ground, and highlight the necessity for high angular resolution via adaptive optics or space-based facilities.
    Scopus© Citations 13  223
  • Publication
    Measuring the ionisation fraction in a jet from a massive protostar
    It is important to determine if massive stars form via disc accretion, like their low-mass counterparts. Theory and observation indicate that protostellar jets are a natural consequence of accretion discs and are likely to be crucial for removing angular momentum during the collapse. However, massive protostars are typically rarer, more distant and more dust enshrouded, making observational studies of their jets more challenging. A fundamental question is whether the degree of ionisation in jets is similar across the mass spectrum. Here we determine an ionisation fraction of ~5–12% in the jet from the massive protostar G35.20-0.74N, based on spatially coincident infrared and radio emission. This is similar to the values found in jets from lower-mass young stars, implying a unified mechanism of shock ionisation applies in jets across most of the protostellar mass spectrum, up to at least ~10 solar masses.
    Scopus© Citations 15  404