Now showing 1 - 4 of 4
  • Publication
    No effect of warming and watering on soil nitrous oxide fluxes in a temperate sitka spruce forest ecosystem
    (Taylor & Francis, 2020-10-08) ;
    Soil fluxes of nitrous oxide (N2O) play an important role in the global greenhouse gas budget. However, the response of soil N2O emissions to climate change in temperate forest plantations is not yet well understood. In this study, we assessed the responses of soil N2O fluxes to experimental warming with or without water addition, using a replicated in situ heating (~2°C above ambient) and water addition (170 mm) experiment in a temperate Sitka spruce plantation forest over the period 2014–2016. We found that seasonal fluxes of N2O during the year were highly variable, ranging from net uptake to net emissions. Seasonal variations in soil N2O fluxes were not correlated with either soil temperature or soil moisture. In addition, none of the individual warming/watering treatments, or their interactions, had significant effects on soil N2O fluxes and N-related soil properties. Overall, our results suggest that despite future increases in temperature, soil N2O emission may remain largely unchanged in many temperate forest ecosystems that are often N-limited.
      108Scopus© Citations 2
  • Publication
    Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta‐analysis
    Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.
      87Scopus© Citations 31
  • Publication
    Spatially Related Sampling Uncertainty in the Assessment of Labile Soil Carbon and Nitrogen in an Irish Forest Plantation
    The importance of labile soil carbon (C) and nitrogen (N) in soil biogeochemical processes is now well recognized. However, the quantification of labile soil C and N in soils and the assessment of their contribution to ecosystem C and N budgets is often constrained by limited information on spatial variability. To address this, we examined spatial variability in dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) in a Sitka spruce forest in central Ireland. The results showed moderate variations in the concentrations of DOC and DTN based on the mean, minimum, and maximum, as well as the coefficients of variation. Residual values of DOC and DTN were shown to have moderate spatial autocorrelations, and the nugget sill ratios were 0.09% and 0.10%, respectively. Distribution maps revealed that both DOC and DTN concentrations in the study area decreased from the southeast. The variability of both DOC and DTN increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. The cokriging technique performed better than the ordinary kriging for predictions of DOC and DTN, which are highly correlated. This study provides a statistically based assessment of spatial variations in DOC and DTN and identifies the sampling effort required for their accurate quantification, leading to improved assessments of forest ecosystem C and N budgets.
    Scopus© Citations 2  7
  • Publication
    The Impact of Modifications in Forest Litter Inputs on Soil N2O Fluxes: A Meta-Analysis
    Although litter can regulate the global climate by influencing soil N2O fluxes, there is no consensus on the major drivers or their relative importance and how these impact at the global scale. In this paper, we conducted a meta-analysis of 21 global studies to quantify the impact of litter removal and litter doubling on soil N2O fluxes from forests. Overall, our results showed that litter removal significantly reduced soil N2O fluxes (−19.0%), while a doubling of the amount of litter significantly increased soil N2O fluxes (30.3%), based on the results of a small number of studies. Litter removal decreased the N2O fluxes from tropical forest and temperate forest. The warmer the climate, the greater the soil acidity, and the larger the soil C:N ratio, the greater the impact on N2O emissions, which was particularly evident in tropical forest ecosystems. The decreases in soil N2O fluxes associated with litter removal were greater in acid soils (pH < 6.5) or soils with a C:N > 15. Litter removal decreased soil N2O fluxes from coniferous forests (−21.8%) and broad-leaved forests (−17.2%) but had no significant effect in mixed forests. Soil N2O fluxes were significantly reduced in experiments where the duration of litter removal was <1 year. These results showed that modifications in ecosystem N2O fluxes due to changes in the ground litter vary with forest type and need to be considered when evaluating current and future greenhouse gas budgets.
      8Scopus© Citations 1