Now showing 1 - 2 of 2
  • Publication
    ROCK activity and the Gβγ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells
    Bone marrow-derived stromal cells (BMSCs), also known as mesenchymal stem cells, are the focus of intensive efforts worldwide to elucidate their function and biology. Despite the importance of BMSC migration for their potential therapeutic uses, the mechanisms and signalling governing stem cell migration are still not fully elucidated. Methods: We investigated and detailed the effects of MCP-1 activation on BMSCs by using inhibitors of G protein-coupled receptor alpha beta (GPCR αβ), ROCK (Rho-associated, coiled-coil containing protein kinase), and PI3 kinase (PI3K). The effects of MCP-1 stimulation on intracellular signalling cascades were characterised by using immunoblotting and immunofluorescence. The effectors of MCP-1-mediated migration were investigated by using migration assays (both two-dimensional and three-dimensional) in combination with inhibitors. Results: We established the kinetics of the MCP-1-activated signalling cascade and show that this cascade correlates with cell surface re-localisation of chemokine (C motif) receptor 2 (CCR2) (the MCP-1 receptor) to the cell periphery following MCP-1 stimulation. We show that MCP-1-initiated signalling is dependent on the activation of βγ subunits from the GPCR αβγ complex. In addition, we characterise a novel role for PI3Kγ signalling for the activation of both PAK and ERK following MCP-1 stimulation. We present evidence that the Gβγ complex is responsible for PI3K/Akt, PAK, and ERK signalling induced by MCP-1 in BMSCs. Importantly, we found that, in BMSCs, inhibition of ROCK significantly inhibits MCP-1-induced chemotactic migration, in contrast to previous reports in other systems.Conclusions: Our results indicate differential chemotactic signalling in mouse BMSCs, which has important implications for the translation of in vivo mouse model findings into human trials. We identified novel components and interactions activated by MCP-1-mediated signalling, which are important for stem cell migration. This work has identified additional potential therapeutic targets that could be manipulated to improve BMSC delivery and homing.
      323Scopus© Citations 14
  • Publication
    Doxorubicin induces the DNA damage response in cultured human mesenchymal stem cells
    Anthracyclines, including doxorubicin, are widely used in the treatment of leukemia. While the effects of doxorubicin on hematopoietic cells have been characterized, less is known about the response of human mesenchymal stem cells (hMSCs) in the bone marrow stroma to anthracyclines. We characterized the effect of doxorubicin on key DNA damage responses in hMSCs, and compared doxorubicin sensitivity and DNA damage response activation between isolated hMSCs and the chronic myelogenous leukemia cell line, K562. Phosphorylation of H2AX, Chk1, and RPA2 was more strongly activated in K562 cells than in hMSCs, at equivalent doses of doxorubicin. hMSCs were relatively resistant to doxorubicin such that, following exposure to 15 μM doxorubicin, the level of cleaved caspase-3 detected by western blotting was lower in hMSCs compared to K562 cells. Flow cytometric analysis of cell cycle progression demonstrated that exposure to doxorubicin induced G2/M phase arrest in hMSCs, while 48 h after exposure, 15.6 % of cells were apoptotic, as determined from the percentage of cells having sub-G1 DNA content. We also show that the doxorubicin sensitivity of hMSCs isolated from a healthy donor was comparable to that of hMSCs isolated from a chronic lymphocytic leukemia patient. Overall, our results demonstrate that high doses of doxorubicin induce the DNA damage response in hMSCs, and that cultured hMSCs are relatively resistant to doxorubicin.
    Scopus© Citations 35  1459