Now showing 1 - 8 of 8
  • Publication
    HGF induces epithelial-to-mesenchymal transition by modulating the mammalian Hippo/MST2 and ISG15 pathways
    Epithelial to mesenchymal transition (EMT) is a fundamental cell differentiation/dedifferentiation process which is associated with dramatic morphological changes. Formerly polarized and immobile epithelial cells which form cell junctions and cobblestone-like cell sheets undergo a transition into highly motile, elongated, mesenchymal cells lacking cell-to-cell adhesions. To explore how the proteome is affected during EMT we profiled protein expression and tracked cell biological markers in Madin-Darby kidney epithelial cells undergoing hepatocyte growth factor (HGF) induced EMT. We were able to identify and quantify over 4000 proteins by mass spectrometry. Enrichment analysis of this revealed that expression of proteins associated with the ubiquitination machinery was induced, whereas expression of proteins regulating apoptotic pathways was suppressed. We show that both the mammalian Hippo/MST2 and the ISG15 pathways are regulated at the protein level by ubiquitin ligases. Inhibition of the Hippo pathway by overexpression of either ITCH or A-Raf promotes HGF-induced EMT. Conversely, ISG15 overexpression is sufficient to induce cell scattering and an elongated morphology without external stimuli. Thus, we demonstrate for the first time that the Hippo/MST2 and ISG15 pathways are regulated during growth-factor induced EMT.
      809Scopus© Citations 58
  • Publication
    On-Beads Digestion in Conjunction with Data-Dependent Mass Spectrometry: A Shortcut to Quantitative and Dynamic Interaction Proteomics
    With the advent of the '-omics' era, biological research has shifted from functionally analyzing single proteins to understanding how entire protein networks connect and adapt to environmental cues. Frequently, pathological processes are initiated by a malfunctioning protein network rather than a single protein. It is therefore crucial to investigate the regulation of proteins in the context of a pathway first and signaling network second. In this study, we demonstrate that a quantitative interaction proteomic approach, combining immunoprecipitation, in-solution digestion and label-free quantification mass spectrometry, provides data of high accuracy and depth. This protocol is applicable, both to tagged, exogenous and untagged, endogenous proteins. Furthermore, it is fast, reliable and, due to a label-free quantitation approach, allows the comparison of multiple conditions. We further show that we are able to generate data in a medium throughput fashion and that we can quantify dynamic interaction changes in signaling pathways in response to mitogenic stimuli, making our approach a suitable method to generate data for system biology approaches.
      230Scopus© Citations 90
  • Publication
    Substrate-Trapped Interactors of PHD3 and FIH Cluster in Distinct Signaling Pathways
    Amino acid hydroxylation is a post-translational modification that regulates intra- and inter-molecular protein-protein interactions. The modifications are regulated by a family of 2-oxoglutarate- (2OG) dependent enzymes and, although the biochemistry is well understood, until now only a few substrates have been described for these enzymes. Using quantitative interaction proteomics, we screened for substrates of the proline hydroxylase PHD3 and the asparagine hydroxylase FIH, which regulate the HIF-mediated hypoxic response. We were able to identify hundreds of potential substrates. Enrichment analysis revealed that the potential substrates of both hydroxylases cluster in the same pathways but frequently modify different nodes of signaling networks. We confirm that two proteins identified in our screen, MAPK6 (Erk3) and RIPK4, are indeed hydroxylated in a FIH- or PHD3-dependent mechanism. We further determined that FIH-dependent hydroxylation regulates RIPK4-dependent Wnt signaling, and that PHD3-dependent hydroxylation of MAPK6 protects the protein from proteasomal degradation.
      261Scopus© Citations 58
  • Publication
    Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients
    Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient–specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.
      1098Scopus© Citations 98
  • Publication
    Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function
    Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral-mediated expression of wild-type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre-ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E-MTAB-5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt-cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells 2017;35:1958–1972.
      123Scopus© Citations 67
  • Publication
    HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus
    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.
      355Scopus© Citations 50
  • Publication
    VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle
    VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis.
      148Scopus© Citations 37
  • Publication
    Robustness and Evolvability of the Human Signaling Network
    Biological systems are known to be both robust and evolvable to internal and external perturbations, but what causes these apparently contradictory properties? We used Boolean network modeling and attractor landscape analysis to investigate the evolvability and robustness of the human signaling network. Our results show that the human signaling network can be divided into an evolvable core where perturbations change the attractor landscape in state space, and a robust neighbor where perturbations have no effect on the attractor landscape. Using chemical inhibition and overexpression of nodes, we validated that perturbations affect the evolvable core more strongly than the robust neighbor. We also found that the evolvable core has a distinct network structure, which is enriched in feedback loops, and features a higher degree of scale-freeness and longer path lengths connecting the nodes. In addition, the genes with high evolvability scores are associated with evolvability-related properties such as rapid evolvability, low species broadness, and immunity whereas the genes with high robustness scores are associated with robustness-related properties such as slow evolvability, high species broadness, and oncogenes. Intriguingly, US Food and Drug Administration-approved drug targets have high evolvability scores whereas experimental drug targets have high robustness scores.
      268Scopus© Citations 22