Now showing 1 - 2 of 2
  • Publication
    A diversified portfolio of tokenised revenue streams can provide hedging opportunities for renewable electricity generators
    The revenue streams of renewable energy generators are subject to both price and volumetric risks, owing to the variable nature of weather patterns. This negatively impacts viability of the generation projects. Blockchain-based decentralised finance methods may present new means for generators to hedge against such volatility. This paper proposes tokenised revenue streams (RevToks) as a novel tool for electrical generators. By holding a RevTok, a participant can directly claim a portion of that generator’s revenue. To articulate how such exotic financial arrangements may benefit renewable generators, a case study market simulation is performed. Generators can trade RevToks to diversify their cash flows, decreasing their variance and thus overall risk exposure. The simulation uses Multiportfolio Theory — an extension of Modern Portfolio Theory — to optimise the RevTok holdings of all generators simultaneously. Examining the results show that RevTok trades occur between generators of varying technology and remuneration schema. By trading RevToks amongst themselves, all generators achieve far less volatile revenue streams, while maintaining constant expected revenues. Thus, the RevTok paradigm potentially offers improved revenue hedging when compared to established methods for energy firms. Results show that implementing such a blockchain-based arrangement for existing central pool operators unlocks downstream opportunities for renewable generators.
  • Publication
    A Three-Tier Framework for Understanding Disruption Trajectories for Blockchain in the Electricity Industry
    Ever since the invention of Bitcoin by the pseudonymous Satashi Nakamoto, cryptocurrency has provoked debate in banking and finance sectors, and is sometimes considered a potential successor to fiat currency. Blockchain, the new technology underpinning decentralised and immutable databases, has seen much discussion as a potentially game-changing development. Although many industries are exploring its value, the technology has thus far made only minor impacts. A rapidly expanding base of research has emerged on blockchain’s role as a potential disruptor in the electrical energy industry. However, it may be difficult to distinguish hype from more imminently plausible impacts. This paper attempts to serve as a guide for engineering managers wishing to make sense of blockchain’s potential in electricity. This is accomplished by formulating a novel blockchain industry disruption framework, which exists across three tiers. These tiers extend from ideas with the least effect on an industry to total revolutionary concepts that could completely transform an industry. This taxonomy is constructed by examining existing research into disruption hierarchies and blockchain classification methods. Through the lens of this taxonomy, a literature review is performed on blockchain’s role in energy to draw out themes and ideas characterising each tier. The potential likelihood of real-world application of various ideas are discussed, considering how established industries may be affected or disrupted. The authors provide some conjecture here. Finally, courses of action are suggested for those whose sector may be affected by blockchain.
      452Scopus© Citations 23