Now showing 1 - 3 of 3
  • Publication
    Scalability of photochemical reactions in continuous flow mode
    (Springer, 2021-05-17) ;
    Continuous flow photochemistry as a field has witnessed an increasing popularity over the last decade in both academia and industry. Key drivers for this development are safety, practicality as well as the ability to rapidly access complex chemical structures. Continuous flow reactors, whether home-built or from commercial suppliers, additionally allow for creating valuable target compounds in a reproducible and automatable manner. Recent years have furthermore seen the advent of new energy efficient LED lamps that in combination with innovative reactor designs provide a powerful means to increasing both the practicality and productivity of modern photochemical flow reactors. In this review article we wish to highlight key achievements pertaining to the scalability of such continuous photochemical processes. Graphical abstract: [Figure not available: see fulltext.]
    Scopus© Citations 84  62
  • Publication
    A continuous flow synthesis of [1.1.1]propellane and bicyclo[1.1.1]pentane derivatives
    (Royal Society of Chemistry, 2021-03-21) ;
    A continuous flow process to generate [1.1.1]propellane on demand is presented rendering solutions of [1.1.1]propellane that can directly be derivatised into various bicyclo[1.1.1]pentane (BCP) species. This was realised in throughputs up to 8.5 mmol h-1providing an attractive and straightforward access to gram quantities of selected BCP building blocks. Lastly, a continuous photochemical transformation of [1.1.1]propellane into valuable BCPs bearing mixed ester/acyl chloride moieties was developed.
    Scopus© Citations 19  69
  • Publication
    Development of a Telescoped Flow Process for the Safe and Effective Generation of Propargylic Amines
    Propargylic amines are important multifunctional building blocks that are frequently exploited in the synthesis of privileged heterocyclic entities. Herein we report on a novel flow process that achieves the safe and effective on-demand synthesis of propargylic amines in a telescoped manner. This process minimizes exposure to hazardous azide intermediates and renders a streamlined route into these building blocks. The value of this approach is demonstrated by the rapid generation of a small selection of drug-like thiazolines that result from a high-yielding reaction cascade between propargylic amines with different aryl isothiocyanates.
    Scopus© Citations 5  155