Now showing 1 - 10 of 21
  • Publication
    Value of inspection in fatigue management of steel structures
    Fatigue cracking is a common problem that needs to be managed in the life cycles of steel structures. Operational inspections and repairs are important means of fatigue crack management. Driven by high relevance in safety control and budget saving, inspection and maintenance planning has been widely studied. However, the value of inspection and repairs has typically not been fully appreciated and quantified rationally before they are implemented. The basic idea of this paper is to address the planning problem with focus on repair other than on inspection. A maintenance strategy without inspection is studied and serves as comparison of a maintenance strategy with inspection. Then the value of repair and the value of inspection relative to repair can be evaluated respectively. An illustrative example is performed on a typical fatigue-prone detail in steel structures.
      148
  • Publication
    On the effectiveness and uncertainty of inspection methods for fatigue crack management
    Non-destructive testing (NDT) methods have been widely used for damage examination and structural maintenance, e.g. detecting and repairing fatigue cracks. In-service inspections help to increase fatigue reliability by providing new information for updating structural failure probability and making decisions on repair. However, these benefits are often compromised by uncertainties associated with inspection methods. Sometimes existing cracks may not be identified, and positive inspection indication may not exist. It is of great interest to consider the influence of inspection uncertainty in maintenance optimization because the benefits and costs of maintenance are affected by inspection decisions (inspection times and methods) which are subjected to inspection uncertainty. However, the influence of inspection uncertainty on maintenance optimization has not been explicitly and adequately covered in the literature. In this paper, the problem has been investigated by probabilistic modelling of the qualities of inspection methods via probability of detection (PoD) functions. A new PoD function has been proposed to characterize the inspection quality when inspection uncertainty is not considered. Optimum inspection decisions are derived with the objective of maximizing lifetime reliability index under two scenarios (considering and not considering inspection uncertainty). The effectiveness of a planned inspection is defined based on the max reliability indexes under the two scenarios. It is shown that the max lifetime reliability index generally decreases when inspection uncertainty is considered. However, inspection uncertainty may have little influence on the lifetime reliability index depending on the planned inspection time. The effectiveness of a planned inspection increases with the decrease of the mean detectable crack size.
      240
  • Publication
    Uncertainty quantification and calibration of a modified fracture mechanics model for reliability-based inspection planning
    Efficient inspection and maintenance are important means to enhance fatigue reliability of engineering structures, but they can only be achieved efficiently with the aid of accurate pre-diction of fatigue crack initiation and growth until fracture. The influence of crack initiation on fatigue life has received a significant amount of attention in the literature, although its im-pact on the inspection plan is not generally addressed. Current practice in the prediction of fatigue life is the use of S-N models at the design stage and Fracture Mechanics (FM) models in service. On the one hand, S-N models are relatively easy to apply given that they directly relate fatigue stress amplitude to number of cycles of failure, however, they are difficult to extrapolate outside the test conditions employed to define the S-N curves. On the other hand, FM models like the Paris propagation law give measurable fatigue damage accumulation in terms of crack growth and have some ability to extrapolate results outside the test conditions, but they can only be a total fatigue life model if the initial crack size was known given that they do not address the crack initiation period. Furthermore, FM models generally introduce large uncertainties in parameters that are often difficult to measure such as initial crack size, crack growth rate, threshold value for stress intensity factor range, etc. This paper proposes a modified FM model that predicts the time to failure allowing for crack initiation period. The main novelty of the modified FM model is the calibration using S-N data (i.e., inclusive of crack initiation period) for an established criterion in fatigue life and reliability level. Sources of uncertainty associated to the model are quantified in probabilistic terms. The modified FM model can then be applied to reliability-based inspection planning. An illustrative example is performed on a typical detail of ship structure, where the optimum inspection plan derived from the proposed model is compared to recommendations by existing FM models. Results demonstrate to what extent is the optimum inspection plan influenced by the crack initiation period. The modified model is shown to be a reliable tool for both fatigue design and fatigue management of inspection and maintenance intervals. 
      373
  • Publication
    Development of probabilistic fracture mechanics method for fatigue life prediction based on EIFS concept
    A problem with fracture mechanics (FM) based fatigue analysis is that reliable information on initial crack/flaw size is often unavailable. Also, FM method cannot be applied directly to welded joints with relatively small initial flaws and long crack initiation life. This paper proposes a novel probabilistic FM method based on the equivalent initial flaw size (EIFS) concept. The initial crack size is substituted with EIFS to take both the crack initiation and propagation life into account. Three methods are tested to obtain mean value of EIFS: calibrating to S-N curve, Kitagawa-Takahashi (KT) diagram and fitting to test data. The obtained EIFSs are evaluated by comparing the predicted fatigue lives and crack evolutions with S-N curve and test crack evolution data. The suggested procedure is to derive the mean value of EIFS from S-N curve and the coefficient of variation from KT diagram.
      138
  • Publication
    Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
    (World Academy of Science, Engineering and Technology, 2016-11) ; ;
    Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.
      358
  • Publication
    A simplified method for holistic value of information computation for informed structural integrity management under uncertainty
    Collecting structural information by inspection or monitoring is important means to reduce uncertainty and improve the qualities of maintenance decisions in structural integrity management. However, information collecting inevitably involves some costs. When information collecting brings added value and to what extent uncertainty reduction suffices are questions that are often not fully accounted for before information collecting activities are carried out. Value of information (VoI) computation helps justifying investments and informing efficient strategies for information collecting. This paper develops a holistic approach to quantify the VoI from multiple inspections in the lifetime of an engineering structure, taking into account combined effects of lifetime maintenance interventions. The approach can be used for holistic planning and optimization of lifetime inspections at an early stage. Also, a simplified VoI computation approach is developed for some maintenance decision cases based on an alignment decision strategy (ADS). The approaches are exemplified on a typical marine structure, and sensitivities of VoI to the number of planned interventions, cost ratio, inspection times and methods are studied. It is shown that the ADS and the simplified method are well applicable when the number of planned interventions is large. The optimal maintenance decisions and inspection times obtained by VoI-based and cost-based optimization methods are compared.
      239Scopus© Citations 9
  • Publication
    An integrated probabilistic approach for optimum maintenance of fatigue-critical structural components
    Inspection and maintenance are important means to validate or recover reliability of metallic structural systems, which usually degrade over time due to fatigue, corrosion and other mechanisms. These inspection and maintenance actions generally account for a large part of lifetime costs, which necessitate an efficient maintenance strategy to satisfy the requirements on reliability and costs. Most often, an optimum maintenance/repair crack size criterion is derived by probabilistic cost-benefit analysis, e.g. by minimization of expected lifetime costs, which are assessed based on cost models. This paper proposes an integrated approach to derive an optimum range for repair (crack size) criterion using both reliability-based and cost-based optimization. It is found that an optimum repair criterion exists which leads to the maximum lifetime fatigue reliability. A smaller repair criterion than the reliability-optimum do not lead to a higher lifetime fatigue reliability but leads to higher lifetime costs. Hence, a limit for repair criterion is defined by the reliability-optimum criterion, which can be obtained without cost models. The reliability-optimum criterion is found to be smaller than the cost-optimum criterion and thus an optimum range between the reliability-optimum and cost-optimum criterion is established.
      310Scopus© Citations 10
  • Publication
    Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
    (World Academy of Science, Engineering and Technology, 2016-11-08) ; ;
    Over the past decades, crack propagation has been extensively studied by researchers around the word. The approach based on crack propagation models have been widely used in inspection planning. This approach has the advantage that it gives measurable fatigue damage accumulation in terms of crack propagation with time and thus crack propagation models can be updated with inspection results. However, a prerequisite for using crack propagation models in inspection planning is that parameters such as initial crack size, crack growth rate, geometry function, etc. are known.  Among those parameters, initial crack size, depending on welding quality, material and the environment, is associated with the most uncertainties because of sampling and measuring problems. Another prerequisite for using crack propagation models in inspection planning is that crack initiation period can be assumed to be negligible. Both prerequisites are challenged nowadays as manufacturing and welding techniques have been improved. Some high-quality welded joins have been proven free from detectable size of flaws and the crack initiation period can account for a large part of the whole fatigue life. This gives rise to big difficulty for inspection planning of high-quality welded joins, as there is no generally acceptable approach for modelling the whole fatigue process that includes crack initiation period. Compared to as-welded joints, reliable inspection planning is more crucial for high-quality welded joins, as they are generally designed to withstand a larger stress range. In addition, they may have shorter time for inspection as crack initiation time account for a large part of fatigue life, with a shorter crack propagation period to failure due to higher stress range. To address this problem for high-quality welded joints, a robust model accounting for the whole fatigue process needs to be developed. The core issue is how the crack initiation period can be modelled and added to the crack propagation time. To help identify this issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data, e.g. Weibull distribution or lognormal distribution; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modelled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; 4) Modelling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. Conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.
      557
  • Publication
    Fatigue inspection and maintenance optimization: A comparison of information value, life cycle cost and reliability based approaches
    Fatigue cracks increase structural failure risk and timely maintenance is very important. Maintenance planning is often formulated as a probabilistic optimization problem, considering uncertainties in structural and load modelling, material properties, damage measurements, etc. A decision rule or strategy, e.g. condition based maintenance (CBM), needs to be set up, and then an optimal maintenance criterion or threshold is derived via solving the optimization problem. This paper develops a probabilistic maintenance optimization approach exploiting value of information (VoI) computation and Bayesian decision optimization. The VoI based approach explicitly quantifies added values from future inspections, and gives an optimal decision (or strategy) by direct modelling decision alternatives and evaluating their expected outcomes, rather than a pre-defined strategy. A comparative study on VoI, life cycle cost (LCC) and reliability based optimization approaches is conducted. It is shown that the VoI based approach takes all available maintenance strategies into account (both with and without involving inspections), and can reliably yield optimal maintenance strategies, whether the VoI is larger than or equal to zero. When the VoI is equal to zero, LCC and reliability based CBM optimization can lead to suboptimal maintenance strategies. The differences in the approaches are illustrated on fatigue-sensitive components in a marine structure.
      440Scopus© Citations 14
  • Publication
    Reliability-based inspection planning in view of both crack initiation and propagation
    Fatigue cracks pose threats to the integrity of welded structures and thus need to be addressed in the whole service lives of structures. In-service inspections are important means to decease the probability of failure due to uncertainties that cannot be accounted for in the design stage. To help schedule inspection actions, the decline curve of reliability index with time needs to be known. A predictive tool is normally developed based on crack propagation models neglecting the crack initiation stage, which leads to conservative predictions for fatigue life. Inspection plans built on those predictions are far from optimal, especially for welds with relatively long crack initiation life. This paper proposes to use a fracture mechanics based reliabil-ity analysis method that takes the crack initiation stage into account via the concept of Time-To-Crack-Initiation (TTCI). The optimum inspection plan for a fatigue prone ship structural component is derived by the new approach and compared to the commonly-used method that only considers crack propagation life. Two inspection planning approaches are tested to investigate the influence of incorporating crack initiation period: (i) target reliability approach and, (ii) equidistant inspection times approach. With each planning ap-proach, two inspection methods are adopted: close visual and magnetic particle inspection. The paper con-cludes with recommendations on the inspection method and planning approach to adopt while considering and without considering the crack initiation stage.
      486Scopus© Citations 7