Now showing 1 - 2 of 2
  • Publication
    The importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin
    Two new inhibitors have synthesized where the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced by a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H respectively. Using these inhibitors we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases inhibitor binding 3-4 fold while a glyoxal group increases binding by 500-2000 fold. We show that at pH 7.2 the effective molarity of the catalytic hydroxyl group of the active site serine is 41,000-229,000 and 101,000 to159,000 for α-chymotrypsin and subtilisin Carlsberg respectively. It is estimated that oxyanion stabilisation and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pKa of the active site histidine enabling it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.
      500Scopus© Citations 15
  • Publication
    Oxyanion and tetrahedral intermediate stabilization by subtilisin : detection of a new tetrahedral adduct
    The peptide-derived glyoxal inhibitor Z-Ala-Ala-Phe-glyoxal has been shown to be ~10 fold more effective as an inhibitor of subtilisin than Z-Ala-Pro-Phe-glyoxal. Signals at 107.2 p.p.m. and 200.5 p.p.m. are observed for the glyoxal keto and aldehyde carbons of the inhibitor bound to subtilisin, showing that the glyoxal keto and aldehyde carbons are sp3 and sp2 hybridized respectively. The signal at 107.2 p.p.m. from the carbon atom attached to the hemiketal oxyanion is formed in a slow exchange process that involves the dehydration of the glyoxal aldehyde carbon. Two additional signals are observed one at 108.2 p.p.m. and the other at 90.9 p.p.m. for the glyoxal keto and aldehyde carbons respectively at pHs 6-8 demonstrating that subtilisin forms an additional tetrahedral adduct with Z-Ala-Ala-Phe-glyoxal in which both the glyoxal keto and aldehyde carbons are sp3 hybridised. For the first time we can quantify oxyanion stabilisation in subtilisin. We conclude that oxyanion stabilisation is more effective in subtilisin than in chymotrypsin. Using 1H-NMR we show that the binding of Z-Ala-Ala-Phe-glyoxal to subtilisin raises the pKa of the imidazolium ion of the active site histidine residue promoting oxyanion stabilisation. The mechanistic significance of these results are discussed.
      368Scopus© Citations 7