Now showing 1 - 2 of 2
  • Publication
    Model-based clustering of longitudinal data
    A new family of mixture models for the model-based clustering of longitudinal data is introduced. The covariance structures of eight members of this new family of models are given and the associated maximum likelihood estimates for the parameters are derived via expectation-maximization (EM) algorithms. The Bayesian information criterion is used for model selection and a convergence criterion based on Aitken’s acceleration is used to determine convergence of these EM algorithms. This new family of models is applied to yeast sporulation time course data, where the models give good clustering performance. Further constraints are then imposed on the decomposition to allow a deeper investigation of correlation structure of the yeast data. These constraints greatly extend this new family of models, with the addition of many parsimonious models.
      1158Scopus© Citations 72
  • Publication
    Model-Based clustering of microarray expression data via latent Gaussian mixture models
    (Oxford University Press, 2010-11-01) ;
    In recent years, work has been carried out on clustering gene expression microarray data. Some approaches are developed from an algorithmic viewpoint whereas others are developed via the application of mixture models. In this article, a family of eight mixture models which utilizes the factor analysis covariance structure is extended to 12 models and applied to gene expression microarray data. This modelling approach builds on previous work by introducing a modified factor analysis covariance structure, leading to a family of 12 mixture models, including parsimonious models. This family of models allows for the modelling of the correlation between gene expression levels even when the number of samples is small. Parameter estimation is carried out using a variant of the expectation–maximization algorithm and model selection is achieved using the Bayesian information criterion. This expanded family of Gaussian mixture models, known as the expanded parsimonious Gaussian mixture model (EPGMM) family, is then applied to two well-known gene expression data sets.
      361Scopus© Citations 106