Now showing 1 - 4 of 4
  • Publication
    The role of metabolomics in determination of new dietary biomarkers
    (Cambridge University Press, 2017-01-16) ;
    Traditional methods for the assessment of dietary intake are prone to error; in order to improve and enhance these methods increasing interest in the identification of dietary biomarkers has materialised. Metabolomics has emerged as a key tool in the area of dietary biomarker discovery and to date the use of metabolomics has identified a number of putative biomarkers. Applications to identify novel biomarkers of intake have in general taken three approaches: (1) specific acute intervention studies to identify specific biomarkers of intake; (2) searching for biomarkers in cohort studies by correlating to self-reported intake of a specific food/food group(s); (3) analysing dietary patterns in conjunction with metabolomic profiles to identify biomarkers and nutritypes. A number of analytical technologies are employed in metabolomics as currently there is no single technique capable of measuring the entire metabolome. These approaches each have their own advantages and disadvantages. The present review will provide an overview of current technologies and applications of metabolomics in the determination of new dietary biomarkers. In addition, it will address some of the current challenges in the field and future outlooks.
      311Scopus© Citations 32
  • Publication
    A systematic review of metabolite biomarkers of schizophrenia
    Current diagnosis of schizophrenia relies exclusively on the potentially subjective interpretation of clinical symptoms and social functioning as more objective biological measurement and medical diagnostic tests are not presently available. The use of metabolomics in the discovery of disease biomarkers has grown in recent years. Metabolomic methods could aid in the discovery of diagnostic biomarkers of schizophrenia. This systematic review focuses on biofluid metabolites associated with schizophrenia. A systematic search of Web of Science and Ovid Medline databases was conducted and 63 studies investigating metabolite biomarkers of schizophrenia were included. A review of these studies revealed several potential metabolite signatures of schizophrenia including reduced levels of essential polyunsaturated fatty acids (EPUFAs), vitamin E and creatinine; and elevated levels of lipid peroxidation metabolites and glutamate. Further research is needed to validate these biomarkers and would benefit from large cohort studies and more homogeneous and well-defined subject groups.
      1862Scopus© Citations 77
  • Publication
    Exploring the Links between Diet and Health in an Irish Cohort: A Lipidomic Approach
    Epidemiology and clinical studies provide clear evidence of the complex links between diet and health. To understand these links, reliable dietary assessment methods are pivotal. Biomarkers have emerged as more objective measures of intake compared with traditional dietary assessment methods. However, there are only a limited number of putative biomarkers of intake successfully identified and validated. The use of biomarkers that reflect food intake to examine diet related diseases represents the next step in biomarker research. Therefore, the aim of this study was to (1) identify and confirm biomarkers associated with dietary fat intake and (2) examine the relationship between those biomarkers with health parameters. Heatmap analysis identified a panel of 22 lipid biomarkers associated with total dietary fat intake in the Metabolic Challenge (MECHE) Study. Confirmation of four of these biomarkers demonstrated responsiveness to different levels of fat intake in a separate intervention study (NutriTech study). Linear regression identified a significant relationship between the panel of dietary fat biomarkers and HOMA-IR, with three lipid biomarkers (C16, PCaaC36:2, and PCae36:4) demonstrating significant associations. Identifying such links allows us to explore the relationship between diet and health to determine whether these biomarkers can be modulated through diet to improve health outcomes.
      536Scopus© Citations 7
  • Publication
    Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort
    The identification of an early biomarker of psychotic disorder is important as early treatment is associated with improved patient outcome. Metabolomic and lipidomic approaches in combination with multivariate statistical analysis were applied to identify plasma alterations in children (age 11) (38 cases vs 67 controls) and adolescents (age 18) (36 cases vs 117 controls) preceeding or coincident with the development of psychotic disorder (PD) at age 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC). Overall, 179 lipids were identified at age 11, with 32 found to be significantly altered between the control and PD groups. Following correction for multiple comparisons, 8 of these lipids remained significant (lysophosphatidlycholines (LPCs) LPC(18:1), LPC(18:2), LPC(20:3); phosphatidlycholines (PCs) PC(32:2; PC(34:2), PC(36:4), PC(0-34-3) and sphingomyelin (SM) SM(d18:1/24:0)), all of which were elevated in the PD group. At age 18, 23 lipids were significantly different between the control and PD groups, although none remained significant following correction for multiple comparisons. In conclusion, the findings indicate that the lipidome is altered in the blood during childhood, long before the development of psychotic disorder. LPCs in particular are elevated in those who develop PD, indicating inflammatory abnormalities and altered phospholipid metabolism. These findings were not found at age 18, suggesting there may be ongoing alterations in the pathophysiological processes from prodrome to onset of PD.
      559Scopus© Citations 33