Now showing 1 - 2 of 2
  • Publication
    Positional Information Generated by Spatially Distributed Signaling Cascades
    The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.
      218Scopus© Citations 34
  • Publication
    Formation of Intracellular Concentration Landscapes by Multisite Protein Modification
    Multiple cellular proteins are covalently modified (e.g., phosphorylated/dephosphorylated) at several sites, which leads to diverse signaling activities. Here, we consider a signaling cascade that is activated at the plasma membrane and composed of two-site protein modification cycles, and we focus on the radial profile of the concentration landscapes created by different protein forms in the cytoplasm. We show that under proper conditions, the concentrations of modified proteins generate a series of peaks that propagate into the cell interior. Proteins modified at both sites form activity gradients with long plateaus that abruptly decay at successive locations along the path from the membrane to the nucleus. We demonstrate under what conditions signals generated at the membrane stall in the vicinity of that membrane or propagate into the cell. We derive analytical approximations for the main characteristics of the protein concentration profiles and demonstrate what we believe to be a novel steady-state pattern formation mechanism capable of generating precise spatial guidance for diverse cellular processes.
      199Scopus© Citations 2