Now showing 1 - 3 of 3
  • Publication
    Detecting highly overlapping community structure by greedy clique expansion
    In complex networks it is common for each node to belong to several communities, implying a highly overlapping community structure. Recent advances in benchmarking indicate that existing community assignment algorithms that are capable of detecting overlapping communities perform well only when the extent of community overlap is kept to modest levels. To overcome this limitation, we introduce a new community assignment algorithm called Greedy Clique Expansion (GCE). The algorithm identifies distinct cliques as seeds and expands these seeds by greedily optimizing a local fitness function. We perform extensive benchmarks on synthetic data to demonstrate that GCE's good performance is robust across diverse graph topologies. Significantly, GCE is the only algorithm to perform well on these synthetic graphs, in which every node belongs to multiple communities. Furthermore, when put to the task of identifying functional modules in protein interaction data, and college dorm assignments in Facebook friendship data, we find that GCE performs competitively.
      1758
  • Publication
    Community detection: effective evaluation on large social networks
    (Oxford University Press, 2014) ;
    While many recently proposed methods aim to detect network communities in large datasets, such as those generated by social media and telecommunications services, most evaluation (i.e. benchmarking) of this research is based on small, hand-curated datasets. We argue that these two types of networks differ so significantly that, by evaluating algorithms solely on the smaller networks, we know little about how well they perform on the larger datasets. Recent work addresses this problem by introducing social network datasets annotated with meta-data that is believed to approximately indicate a 'ground truth' set of network communities. While such efforts are a step in the right direction, we find this meta-data problematic for two reasons. First, in practice, the groups contained in such meta-data may only be a subset of a network’s communities. Second, while it is often reasonable to assume that meta-data is related to network communities in some way, we must be cautious about assuming that these groups correspond closely to network communities. Here, we consider these difficulties and propose an evaluation scheme based on a classification task that is tailored to deal with them.
      640Scopus© Citations 19
  • Publication
    Link Prediction with Social Vector Clocks
    State-of-the-art link prediction utilizes combinations of complex features derived from network panel data. We here show that computationally less expensive features can achieve the same performance in the common scenario in which the data is available as a sequence of interactions. Our features are based on social vector clocks, an adaptation of the vector-clock concept introduced in distributed computing to social interaction networks. In fact, our experiments suggest that by taking into account the order and spacing of interactions, social vector clocks exploit different aspects of link formation so that their combination with previous approaches yields the most accurate predictor to date.
      480Scopus© Citations 20