Now showing 1 - 2 of 2
  • Publication
    Obesity is common in chronic kidney disease and associates with greater antihypertensive usage and proteinuria: evidence from a cross-sectional study in a tertiary nephrology centre
    Obesity is a treatable risk factor for chronic kidney disease progression. We audited the reporting of body-mass index in nephrology outpatient clinics to establish the characteristics of individuals with obesity in nephrology practice. Body-mass index, clinical information and biochemical measures were recorded for patients attending clinics between 3rd August, 2018 and 18th January, 2019. Inferential statistics and Pearson correlations were used to investigate relationships between body-mass index, type 2 diabetes, hypertension and proteinuria. Mean ± SD BMI was 28.6 ± 5.8 kg/m2 (n = 374). Overweight and obesity class 1 were more common in males (P = .02). Amongst n = 123 individuals with obesity and chronic kidney disease, mean ± SD age, n (%) female and median[IQR] eGFR were 64.1 ± 14.2 years, 52 (42.3%) and 29.0[20.5] mL/min/BSA, respectively. A positive correlation between increasing body-mass index and proteinuria was observed in such patients (r = 0.21, P = .03), which was stronger in males and those with CKD stages 4 and 5. Mean body-mass index was 2.3 kg/m2 higher in those treated with 4-5 versus 0-1 antihypertensives (P = .03). Amongst n = 59 patients with obesity, chronic kidney disease and type 2 diabetes, 2 (3.5%) and 0 (0%) were prescribed a GLP-1 receptor analogue and SGLT2-inhibitor, respectively. Our data provides a strong rationale not only for measuring body-mass index but also for acting on the information in nephrology practice, although prospective studies are required to guide treatment decisions in people with obesity and chronic kidney disease.
      129
  • Publication
    Identification of β2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods
    Chronic allograft nephropathy (CAN) remains the leading cause of renal graft loss after the first year following renal transplantation. This study aimed to identify novel urinary proteomic profiles, which could distinguish and predict CAN in susceptible individuals. Experimental Design: The study included 34 renal transplant patients with histologically proven CAN and 36 patients with normal renal transplant function. High-throughput proteomic profiles were generated from urine samples with three different ProteinChip arrays by surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Following SELDI a biomarker pattern software analysis was performed which led to the identification of a novel biomarker pattern that could distinguish patients with CAN from those with normal renal function. Results: An 11.7 kDa protein identified as β2 microglobulin was the primary protein of this biomarker pattern, distinguishing CAN from control patients (ROC = 0.996). SELDI-TOF-MS comparison of purified β2 microglobulin protein and CAN urine demonstrated identical 11.7 kDa protein peaks. Significantly higher concentrations of β2 microglobulin were found in the urine of patients with CAN compared to the urine of normal renal function transplant recipients (p<0.001). Conclusions and clinical relevance: Whilst further validation in a larger more diverse patient population is required to determine if this β2 microglobulin protein biomarker will provide a potential means of diagnosing CAN by non-invasive methods in a clinical setting, this study clearly shows a capability to stratify control and disease patients.
      957Scopus© Citations 20