Now showing 1 - 2 of 2
  • Publication
    Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires
    The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a sharp spatial gradient of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6 cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in the wetter peat (after the moisture gradient) were sensitive to the drier moisture conditions (preceeding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6 cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10 cm of horizontal spread into a wet peat patch. Spread distances of more than 10 cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies.
    Scopus© Citations 38  464
  • Publication
    Propagation probability and spread rate of self-sustained smouldering fires under controlled moisture content and bulk density conditions
    The consumption of large areas of peat during wildfires is due to self-sustained smouldering fronts that can remain active for weeks. We studied the effect of peat moisture content and bulk density on the horizontal propagation of smouldering fire in laboratory-scale experiments. We used milled peat with moisture contents between 25 and 250% (mass of water per mass of dry peat) and bulk densities between 50 and 150 kg m–3. An infrared camera monitored ignition, spread and extinction of each smouldering combustion front. Peats with a bulk density below 75 kg m–3 and a moisture content below 150% self-sustained smouldering propagation for more than 12 cm. Peat with a bulk density of 150 kg m–3 could self-sustain smouldering propagation up to a critical moisture content of 115%. A linear model estimated that increasing both moisture content and bulk density significantly reduced the median fire spread rate (which ranged between 1 and 5 cm h–1). Moisture content had a stronger effect size on the spread rate than bulk density. However, the effect of bulk density on spread rate depends upon the moisture content, with the largest effect of bulk density at low moisture contents.
      311Scopus© Citations 57