Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Thermal response testing of compromised borehole heat exchangers

2012-03-19, Hemmingway, Phil, Long, Michael (Michael M.)

The results of five thermal response tests (TRTs) are presented. Three of the tests were carried out consecutively on the same borehole to illustrate the importance of allowing artificially imposed thermal gradients to dissipate prior to commencement or re-commencement of a test following testing issues. The two remaining tests carried out on separate boreholes confirm the results obtained by the first(uncompromised) of the initial three tests. The testing regime demonstrates the necessity of careful performance of TRT’s and shows the variation in costs/required borehole length which may occur if testing problems occur on site.

No Thumbnail Available
Publication

Numerical and finite element analysis of heat transfer in a closed loop geothermal system

2013-08, Hemmingway, Phil, Tolooiyan, Ali

Analysis of the thermal regime created by a geothermal borehole heat exchanger is performed using a closed form radial heat flow equation, a geothermal borehole heat exchanger design tool and a finite element model. Climatic, heat exchanger construction and building load data are entered into the heat exchanger design tool in order to create a theoretical model along with thermal parameters from a number of geological formations. Output data from the design tool model are used in conjunction with the closed form radial heat flow equation to calculate the predicted temperature with respect to time and distance from the heat exchanger for the modelled ground formations. The output data from the design tool is also used to create a number of finite element method models against which the predictions calculated using the closed form radial heat flow equation can be compared. A good correlation between the temperatures predicted by the finite element models and the closed form equation calculations is observed. However when used within its recommended limiting conditions, the closed form equation is shown to slightly underestimate the temperature of the ground when compared to the finite element model predictions. The limiting conditions associated with the closed form equation are discussed in the context of the output from the finite element method models.

No Thumbnail Available
Publication

Design and development of a low-cost thermal response rig

2012-08-01, Hemmingway, Phil, Long, Michael (Michael M.)

A thermal response test (TRT) is a controlled insitu test during which a known quantity of heat energy is injected into a closed loop heat-exchanger pipe while the heat dissipation rate into the surrounding ground is monitored. Results from a test can be interpreted to determine a number of ground thermal parameters with are vital design requirements for any medium to large scale ground source energy system. This paper describes the design and construction of a low cost TRT rig and compares the results obtained from a test using the constructed rig and a commercially built rig in order to evaluate the accuracy of the constructed equipment. The TRT rig is designed in accordance with the following principles: keep construction costs low, improve the cost-efficiency of TRT testing by incorporating remote data transmission capability and ensure attainment of sufficient accuracy to satisfy the design requirements of ground source energy systems. Analysis of data collected by the TRT rigs result in a calculated thermal conductivity of 1.9 W/mK in both cases. This value falls within the range expected for the tested geological formation and confirms the accuracy of both test rigs.