Now showing 1 - 1 of 1
  • Publication
    Estimation of dispersive properties of encapsulation tissue surrounding deep brain stimulation electrodes in the rat
    The aim of this study was to estimate the electrical properties of the encapsulation tissue surrounding chronically implanted electrodes for deep brain stimulation in the rat. The impedance spectrum of a concentric bipolar microelectrode implanted in the rat brain was measured immediately following surgery and after 8 weeks of implantation. The experimental impedance data were used in combination with a finite element model of the rat brain using a parametric sweep method to estimate the electrical properties of the tissue surrounding the electrode in acute and chronic conditions. In the acute case, the conductivity and relative permittivity of the peri-electrode space were frequency independent with an estimated conductivity of 0.38 S/m and relative permittivity of 123. The electrical properties of the encapsulation tissue in the chronic condition were fitted to a dispersive Cole-Cole model. The estimated conductivity and relative permittivity in the chronic condition at 1 kHz were 0.028 S/m and 2×10 5 , respectively. The estimated tissue properties can be used in combination with computational modeling as a basis for optimization of chronically implanted electrodes to increase the efficacy of long-term neural recording and stimulation.
      327Scopus© Citations 1