Now showing 1 - 3 of 3
  • Publication
    Portable Bridge WIM Data Collection Strategy for Secondary Roads
    A common method of collecting traffic loading data across a large road network is to use a network of permanent pavement-based WIM systems. An alternative is to use one or more portable Bridge Weigh-In-Motion systems which are moved periodically between bridges on the network. To make optimum use of such a system, a suitable data collection strategy is needed to choose locations for the system. This paper describes a number of possible strategies which the authors have investigated for the National Roads Authority in Ireland. The different strategies are examined and their advantages and disadvantages compared. Their effectiveness at detecting a heavy loading event is also investigated and the preferred approach is identified.
      381
  • Publication
    A Bayesian approach for estimating characteristic bridge traffic load effects
    This paper investigates the use of Bayesian updating to improve estimates of characteristic bridge traffic loading. Over recent years the use Weigh-In-Motion technologies has increased hugely. Large Weigh-In-Motion databases are now available for multiple sites on many road networks. The objective of this work is to use data gathered throughout a road network to improve site-specific estimates of bridge loading at a specific Weigh-In-Motion site on the network. Bayesian updating is a mathematical framework for combining prior knowledge with new sample data. The approach is applied here to bridge loading using a database of 81.6 million truck records, gathered at 19 sites in the US. The database represents the prior knowledge of loading throughout the road network and a new site on the network is simulated. The Bayesian approach is compared with a non-Bayesian approach, which uses only the site-specific data, and the results compared. It is found that the Bayesian approach significantly improves the accuracy of estimates of 75-year loading and, in particular, considerably reduces the standard deviation of the error. With the proposed approach less site-specific WIM data is required to obtain an accurate estimate of loading. This is particularly useful where there is concern over an existing bridge and accurate estimates of loading are required as a matter of urgency.
      235
  • Publication
    Modelling Extreme Traffic Loading on Bridges Using Kernal Density Estimators
    (Eugenides Foundation, 2011-10-13) ; ;
    Kernel density estimators are a non-parametric method of estimating the probability density function of sample data. In this paper, the method is applied to find characteristic maximum daily truck weights on highway bridges. The results are then compared with the conventional approach.
      222