Now showing 1 - 2 of 2
  • Publication
    First-principles study of the excited-state properties of coumarin-derived dyes in dye-sensitized solar cells
    Using Time-Dependent Density Functional Theory (TD-DFT), we have investigated the optical properties of dye-sensitized solar cells (DSSCs) comprised of TiO2 nanoparticle sensitized with two coumarins, namely, NKX-2311 and NKX-2593. The two sensitizers (dyes) differ only in their linker moieties and are shown to have different absorption spectra when adsorbed on to the TiO2 surface. Knowledge of different light absorption and charge transfer (CT) behavior within these complexes is useful for further improving the photo-dynamics of newer organic dyes presently being designed and investigated worldwide. Moreover, we have also investigated the effect of deprotonation of the sensitizers' carboxylic groups during adsorption on the titania surface and the excited state electronic properties of the resulting species.
      1278Scopus© Citations 52
  • Publication
    Succinonitrile-based solid-state electrolytes for dye-sensitised solar cells
    Succinonitrile (SCN), a solid ion conductor (10−4 to 10−3 S/cm) in solid form at room temperature, is mixed with either 1,2-dimethyl-3-propylimidazoliuum iodide or 1-butyl-3-methyl imidazolium iodide ionic liquids for forming a solid plastic phase electrolyte for use in dye-sensitised solar cell (DSSC). Cells containing these two electrolytes showed best energy conversion efficiencies of 6.3% and 5.6%, respectively. The commonly used DSSC electrolyte additives inhibit the formation of the SCN plastic phase. However, for the first time, an SCN-additive (additive = guanidinium thiocyanate) electrolyte composition is reported here, which remains as a solid at room temperatures. By using these new solid electrolytes, a simple and rapid single-step filling procedure for making solid-state DSSC is outlined. This process, which reduces the required manufacturing steps from four to one, is most suitable for continuous, high-throughput, commercial DSSC manufacturing lines. These new electrolytes have been tested under low incident light levels (200 lx) to investigate their suitability for indoor DSSC applications
      723Scopus© Citations 19