Now showing 1 - 2 of 2
  • Publication
    First-principles study of the excited-state properties of coumarin-derived dyes in dye-sensitized solar cells
    Using Time-Dependent Density Functional Theory (TD-DFT), we have investigated the optical properties of dye-sensitized solar cells (DSSCs) comprised of TiO2 nanoparticle sensitized with two coumarins, namely, NKX-2311 and NKX-2593. The two sensitizers (dyes) differ only in their linker moieties and are shown to have different absorption spectra when adsorbed on to the TiO2 surface. Knowledge of different light absorption and charge transfer (CT) behavior within these complexes is useful for further improving the photo-dynamics of newer organic dyes presently being designed and investigated worldwide. Moreover, we have also investigated the effect of deprotonation of the sensitizers' carboxylic groups during adsorption on the titania surface and the excited state electronic properties of the resulting species.
      1277ScopusĀ© Citations 52
  • Publication
    A TD-DFT study of the effects of structural variations on the photochemistry of polyene dyes
    We report a TD-DFT study of three polyene dyes namely: NKX-2553, NKX-2554 and NKX-2569 in isolation as well as upon their adsorption on TiO2 nanoparticles. By choosing closely related dyes we wish to focus on the effects of structural variations on the absorption and charge-transfer properties of these systems. These three dyes show a non-intuitive trend in their respective efficiencies and therefore, were chosen to shed light on the structural components that contribute to this behaviour. Although, NKX-2554 has an additional donor group, it is less efficient compared to the simpler NKX-2553 dye that contains only one donor group. When NKX-2554 structure is slightly modified by lengthening the linker-group, one obtains the most efficient dye among this set, namely, NKX-2569. In this work, we show that the changes in the donor moiety has very little or no effect on the efficiency of these dyes as can be seen in the case of NKX-2553 and NKX-2554. On the other hand, the improved performance of NKX-2569-titania complex can be understood to be a result of the longer linker group. A better understanding of these properties within different dye-titania complexes is important for the continual improvement of DSSCs. In this regards, this study will serve to provide guidelines to improve efficiencies of novel organic dyes.
      792ScopusĀ© Citations 39