Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Serendipity following attempts to prepare C-doped rutile TiO2

2014-01-30, Neville, Elaine M., Ziegler, Julia, MacElroy, J. M. Don, Thampi, Ravindranathan, Sullivan, James A.

Attempts to mimic the band gap narrowing seen in anatase TiO2 following C-doping of the lattice where the C arose from a melamine borate precursor were made in situations where the sol-gel mixture was directed towards rutile formation. The formed materials were characterised using XRD, BET, UV-Vis spectroscopy, XPS and TEM and their activities in promoting the photo-degradation of 4-chlorophenol were analysed. It was found that carbon was not doped into the lattice (in contrast to the situations where the sol-gel mixture was directed towards the precipitation of anatase TiO2). In spite of how common reports of the preparation of C-doped TiO2 using sol-gel processes have been, the presence of carbon dopant precursors in a crystallising sol does not necessarily result in the incorporation of C dopants within the final crystalline material, i.e. the nature of the condensing sol is also important. The presence of melamine borate did however increase the proportion of rutile in the final mixture (indeed in the presence of melamine borate the pure rutile phase was formed) and also resulted in materials with higher surface areas (as measured using BET). Furthermore, TEM has shown that rutile TiO2 condensed in the presence of melamine borate had a much more distinct rod-like shape than that condensed in its absence (the latter being more spherical in shape). These materials, notwithstanding the absence of any dopant effect, demonstrated enhanced photocatalytic activity when compared with analogous materials prepared in the absence of melamine borate and this effect is ascribed to both their relatively larger surface areas and their specific shape. Therefore, we have serendipitously come across a method for improving the performance of rutile photocatalysts while searching for a method to generate C-doped rutile TiO2.

No Thumbnail Available
Publication

Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: Photo-electrochemical and photocatalytic properties

2013-09-01, Neville, Elaine M., MacElroy, J. M. Don, Thampi, Ravindranathan, Sullivan, James A.

Carbon-doped titanate nanotubes (C-TNT) were formed via alkaline hydrothermal treatment of a TiO2 nanoparticulate material pre-doped with carbon. Attempts to form C and W co-doped titanate nanotubes using analogous C and W co-doped nanoparticulate materials were unsuccessful. Physical characterisations, such as X-ray diffraction, N2 physisorption and Transmission Electron Microscopy, confirmed the formation of titanate nanotubes ~7 nm in diameter and hundreds of nm in length with increased surface areas relative to the nanoparticulate precursors. X-ray Photoelectron Spectroscopy confirmed the retention of substitutional carbon dopant and the exclusion of tungsten dopant from the doped TNT materials. Converting doped (or undoped TiO2) into C-TNT (or TNT) slightly increases the material’s bandgap but the C-TNT material (in contrast to TNT and undoped TiO2) absorbs into the visible region of the spectrum. C-doped and un-doped titanate nanotube materials were more active in promoting the photo degradation of 4-chlorophenol under visible light than their analogous nanoparticulate precursors. C-TNT was the most photocatalytically active material tested. However, photocurrent response measurements showed C-TNT to be less effective at generating current following irradiation than both its nanoparticulate analogue and nanoparticulate P25 when screen printed onto electrode surfaces. We ascribe this to non-optimal alignment of the TNTs on the electrode surface.

No Thumbnail Available
Publication

Carbon-Doped TiO2 and Carbon, Tungsten-Codoped TiO2 through Sol-Gel Processes in the Presence of Melamine Borate: Reflections through Photocatalysis

2012-08-09, Neville, Elaine M., Mattle, Michael J., Loughrey, David, Rajesh, Bashyam, Rahman, Mahfujur, MacElroy, J. M. Don, Sullivan, James A., Thampi, Ravindranathan

A series of C-doped, W-doped, and C,Wcodoped TiO2 samples have been prepared using modified sol-gel techniques. Reproducible inexpensive C-doping arises from the presence of melamine borate in a sol-gel mixture, whereas W-doping is from the addition of tungstic acid to the sol. The materials have been characterized using elemental analysis, N2 physisorption (BET), thermogravimetric analysis, X-ray diffraction, Raman, X-ray photoelectron, UV-vis spectroscopies, and photocatalytic activity measurements. Doping C and W independently results in an increased absorbance in the visible region of the spectrum with a synergistic effect in increased absorbance when both elements are codoped. The increased visible-light absorbance of the W-doped or codoped materials is not reflected in photocatalytic activity. Visiblelight- induced photocatalytic activity of C-doped material was superior to that of an undoped catalyst, paving the way for its application under only visible-light irradiation conditions. A significant fraction of the spectral red shift commonly observed with doped catalysts might be due to the formation of color centers as a result of defects associated with oxygen vacancies, and bandgap-related narrowing or intragap localization of dopant levels are not the only factors responsible for enhanced visible-light absorption in doped photocatalysts. Furthermore, bandgap narrowing through increases in the energy of the valence band may actually decrease photo-oxidation activity through a curtailment of one route of oxidation.

No Thumbnail Available
Publication

Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors

2014-09, Sullivan, James A., Neville, Elaine M., Herron, Rory, Thampi, Ravindranathan, MacElroy, J. M. Don

In this work, different thermal treatments of titanium isopropoxide-derived photo-catalyst precursors, designed with the purpose of generating C-doped TiO2 photo-catalysts using carbon atoms present in the TiOx gel precursors as dopants, are presented. Specifically, these look at varying the standard calcination techniques using heat treatments in He (rather than calcination in air) and lower temperature calcinations (200 °C rather than 500 °C). The formed materials are characterised using N2 physisorption, XRD, UV Visible spectroscopy and XPS and their activities in promoting the oxidation of 4-chlorophenol under visible-light-only conditions were analysed. The nature of carbon remaining on the (or in the) material is discussed found to be both surface graphitic carbon and carbon present in anionic dopant positions. The different contributions of each type of carbon to the catalytic photo-activity under visible light are discussed.