Now showing 1 - 1 of 1
  • Publication
    Development of an Assimilation Scheme for the Estimation of Drought-Induced Yield Losses Based on Multi-Source Remote Sensing and the AcquaCrop Model
    In the context of the Dragon-3 Farmland Drought project, our research deals with the development of methods for the assimilation of biophysical variables, estimated from multi-source remote sensing, into the AquaCrop model, in order to estimate the yield losses due to drought both at the farm and at the regional scale. The first part of this project was employed to refine a methodology to obtain maps of leaf area index (LAI), canopy cover (CC), fraction of adsorbed photosynthetically active radiation (FAPAR) and chlorophyll (Cab) from satellite optical data, using algorithms based on the training of artificial neural networks (ANN) on PROSAIL model simulations. In the second part, retrieved values of CC were assimilated into the AquaCrop model using the assimilation method of the Ensemble Kalman Filter to estimate grain wheat yield at the field scale.