Now showing 1 - 10 of 17
  • Publication
    Understanding particle deposition kinetics on NF membranes: A focus on micro-beads & membrane interactions at different environmental conditions
    The significance of nanofiltration membrane surface properties when interacting with microbeads with and without permeate flux was investigated. This was achieved by characterising the surface tension and zeta potential of micro-beads and NF90 membranes to determine the colloid–membrane interaction forces. Dynamic adhesion assays under different ionic strengths (0.1 M and 0.01 M) and pH (5, 7, and 9) were conducted. Experimental results showed that at high ionic strength, pH does not have a significant effect on adhesion rates, while at low ionic strength the adhesion rate increased at pH 7 (4.56 s−1 cm−2) compared to pH 5 and pH 9, with rates of 2.69 and 3.66 s−1 cm−2 respectively. A model was devised to predict colloidal adhesion onto membranes under increasing permeate flux conditions, taking into account all interaction forces. Model predictions indicate that drag force overwhelms all other colloid–membrane interaction forces when the permeate flux increases to 7.2 L h−1 m−2. This study suggests that altering membrane surface properties for the prevention of fouling may be limited in its success as an antifouling strategy.
      390Scopus© Citations 14
  • Publication
    The importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes
    Biofouling of nanofiltration (NF) and reverse osmosis (RO) membranes for water treatment has been the subject of increased research effort in recent years. A prerequisite for undertaking fundamental experimental investigation on NF and RO processes is a procedure called compaction. This involves an initial phase of clean water permeation at high pressures until a stable permeate flux is reached. However water quality used during the compaction process may vary from one laboratory to another. The aim of this study was to investigate the impact of laboratory water quality during compaction of NF membranes. A second objective was to investigate if the water quality used during compaction influences initial bacterial adhesion. Experiments were undertaken with NF270 membranes at 15 bar for permeate volumes of 0.5L, 2L, and 5L using MilliQ, deionized or tap water. Membrane autopsies were performed at each permeation point for membrane surface characterisation by contact angle measurements, profilometry, and scanning electron microscopy. The biological content of compacted membranes was assessed by direct epi-fluorescence observation following nucleic acid staining. The compacted membranes were also employed as substrata for monitoring the initial adhesion of Ps. fluorescens under dynamic flow conditions for 30 minutes at 5 minutes intervals. Compared to MilliQ water, membrane compaction using deionized and tap water led to decreases in permeate flux, increase in surface hydrophobicity and led to significant buildup of a homogenous fouling layer composed of both living and dead organisms (>10⁶cells.cm−2). Subsequent measurements of bacterial adhesion resulted in cell loadings of 0.2×10⁵, 1.0×10⁵cells×cm−2 and 2.6×10⁵ cells.cm−2 for deionized, tap water and MilliQ water, respectively. These differences in initial cell adhesion rates demonstrate that choice of laboratory water can significantly impact the results of bacterial adhesion on NF membranes. Standardized protocols are therefore needed for the fundamental studies of bacterial adhesion and biofouling formation on NF and RO membrane. This can be implemented by first employing pure water during all membrane compaction proceduresand for the modelled feed solutions used in the experiment.
      1046Scopus© Citations 25
  • Publication
    The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes
    Until recently, the realization that membrane biofouling during nanofiltration (NF) and reverse osmosis (RO) processes is an unavoidable occurrence, has led to a paradigm shift in which biofouling management approaches rather than biofouling prevention are now being considered. To implement this new concept, it is crucial to understand the fundamentals of cell-surface interactions during bacterial adhesion, a prerequisite to biofouling of membranes. As such, with membrane biofouling already being widely studied and documented, greater attention should be given to the factors involved in the initial bioadhesion onto membranes during NF/RO processes. This review focuses on the interactions between bacterial cells and NF/RO membranes, emphasizing the mechanisms of bacterial adhesion to NF/RO membranes with particular reference to the effects of micro-environmental conditions experienced at the membrane interface, such as feed-water composition, hydrodynamics, permeate flux and conditioning layers. This review also discusses membrane surface properties and how it relates to bacterial adhesion as well as latest advancements in antibacterial membranes, identifying areas that need further investigation.
      1379Scopus© Citations 215
  • Publication
    Upon impact: the fate of adhering Pseudomonas fluorescens cells during Nanofiltration
    (American Chemical Society, 2014-07-29) ; ;
    Nanofiltration (NF) is a high-pressure membrane filtration process increasingly applied in drinking water treatment and water reuse processes. NF typically rejects divalent salts, organic matter, and micropollutants. However, the efficiency of NF is adversely affected by membrane biofouling, during which microorganisms adhere to the membrane and proliferate to create a biofilm. Here we show that adhered Pseudomonas fluorescens cells under high permeate flux conditions are met with high fluid shear and convective fluxes at the membrane-liquid interface, resulting in their structural damage and collapse. These results were confirmed by fluorescent staining, flow cytometry, and scanning electron microscopy. This present study offers a 'first-glimpse' of cell damage and death during the initial phases of bacterial adhesion to NF membranes and raises a key question about the role of this observed phenomena during early-stage biofilm formation under permeate flux and cross-flow conditions.
      399Scopus© Citations 11
  • Publication
    The significance of calcium ions on Pseudomonas fluorescens biofilms – a structural and mechanical study
    The purpose of this study was to investigate the effects of calcium ions on the structural and mechanical properties of Pseudomonas fluorescens biofilms grown for 48 h. Advanced investigative techniques such as confocal laser scanning microscopy and atomic force spectroscopy were employed to characterize biofilm structure as well as biofilm mechanical properties following growth at different calcium concentrations. The presence of calcium during biofilm development led to higher surface coverage with distinct structural phenotypes in the form of a granular and heterogeneous surface, compared with the smoother and homogeneous biofilm surface in the absence of calcium. The presence of calcium also increased the adhesive nature of the biofilm, while reducing its elastic properties. These results suggest that calcium ions could have a functional role in biofilm development and have practical implications, for example, in analysis of biofouling in membrane-based water-treatment processes such as nanofiltration or reverse osmosis where elevated calcium concentrations may occur at the solid–liquid interface.
      491Scopus© Citations 33
  • Publication
    A physical impact of organic fouling layers on bacterial adhesion during nanofiltration
    Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning film thickens to form a thin fouling layer. This study hence sought to determine if a thin fouling layer deposited on a nanofiltration membrane under permeate flux conditions governed bacterial adhesion in the same manner as a conditioning film on a surface. Thin fouling layers (less than 50 μm thick) of humic acid or alginic acid were formed on Dow Filmtec NF90 membranes and analysed using Atomic Force Microscopy (AFM), confocal microscopy and surface energy techniques. Fluorescent microscopy was then used to quantify adhesion of Pseudomonas fluorescens bacterial cells onto virgin or fouled membranes under filtration conditions.It was found that instead of adhering on or into the organic fouling layer, the bacterial cells penetrated the thin fouling layer and adhered directly to the membrane surface underneath. Contrary to what surface energy measurements of the fouling layer would indicate, bacteria adhered to a greater extent onto clean membranes (24 ± 3% surface coverage) than onto those fouled with humic acid (9.8 ± 4%) or alginic acid (7.5 ± 4%). These results were confirmed by AFM measurements which indicated that a considerable amount of energy (10−7 J/μm) was dissipated when attempting to penetrate the fouling layers compared to adhering onto clean NF90 membranes (10−15 J/μm). The added resistance of this fouling layer was thusly seen to reduce the number of bacterial cells which could reach the membrane surface under permeate conditions. This research has highlighted an important difference between fouling layers for the particular case of nanofiltration membranes under permeate flux conditions and surface conditioning films which should be considered when conducting adhesion experiments under filtration conditions. It has also shown AFM to be an integral tool for such experiments.
      435Scopus© Citations 22
  • Publication
    Revealing region-specific biofilm viscoelastic properties by means of a microrheological approach
    Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis.  This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24hr and 48hr) and alternate ionic conditions (with and without calcium chloride supplementation).  The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character. 
      320Scopus© Citations 26
  • Publication
    Antifouling activity of enzyme-functionalized silica nanobeads
    The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24 h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments.
      397Scopus© Citations 18
  • Publication
    Nanofiltration and reverse osmosis surface topographical heterogeneities: do they matter for initial bacterial adhesion?
    The role of the physicochemical and surface properties of NF/RO membranes influencing bacterial adhesion has been widely studied. However, there exists a poor understanding of the potential role membrane topographical heterogeneities can have on bacterial adhesion. Heterogeneities on material surfaces have been shown to influence bacterial adhesion and biofilm development. The purpose of this study was therefore to investigate whether the presence of membrane topographical heterogeneities had a significant role during bacterial adhesion as this could significantly impact on how biofouling develops on membranes during NF/RO operation. An extensive study was devised in which surface topographical heterogeneities from two commercial membranes, NF270 and BW30, were assessed for their role in the adhesion of two model organisms of different geometrical shapes, Pseudomonas fluorescens and Staphylococcus epidermidis. The influence of cross-flow velocity and permeate flux was also tested, as well as the angle to which bacteria adhered compared to the flow direction. Bacterial adhesion onto the membranes and in their surface topographical heterogeneities was assessed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), fluorescence microscopy and image analysis. Results showed that up to 30% of total adhered cells were found in membrane defect areas when defect areas only covered up to 13% of the membrane surface area. This suggests that topographical heterogeneities may play a significant role in establishing environmental niches during the early stages of biofilm development. Furthermore, no noticeable difference between the angle of cell attachment in defect areas compared to the rest of the membrane surface was found.
      456Scopus© Citations 17
  • Publication
    Comparison of biomass detachment from two different Pseudomonas spp. biofilms under constant shear conditions
    In the context of biofilm development, detachment is of practical importance when placed in a biofilm management perspective. The objective of the present study was to examine biofilm structure and biofilm detachment under controlled conditions for two distinct microorganisms grown under constant shear conditions. Detached biofilm biomass was regularly collected and analysed over the course of 72 h biofilm growth by Pseudomonas putida and Pseudomonas fluorescens cells, and biofilm structural development assessed using confocal microscopy. The two Pseudomonas spp., which had very similar specific growth rates in planktonic culture, presented notably different characteristics in terms of biofilm morphology but their detachment behaviours over time were very similar. These findings underline the intrinsic complexity of the detachment phenomenon.
      355Scopus© Citations 4