Now showing 1 - 4 of 4
  • Publication
    Model-based comparative performance analysis of membrane aerated biofilm reactor configurations
    (Wiley, 2008-04-15) ;
    The potential of the membrane aerated biofilm reactor (MABR) for high-rate bio-oxidation was investigated. A reaction-diffusion model was combined with a preliminary hollow-fiber MABR process model to investigate reaction rate-limiting regime and to perform comparative analysis on prospective designs and operational parameters. High oxidation fluxes can be attained in the MABR if the intra-membrane oxygen pressure is sufficiently high, however the volumetric oxidation rate is highly dependent on the membrane specific surface area and therefore the maximum performance, in volumetric terms, was achieved in MABRs with relatively thin fibers. The results show that unless the carbon substrate concentration is particularly high, there does not appear to be an advantage to be gained by designing MABRs on the basis of thick biofilms even if oxygen limitations can be overcome.
      911Scopus© Citations 38
  • Publication
    Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13
    Membrane aerated biofilm reactors (MABRs) have potential in wastewater treatment as they permit simultaneous COD minimisation, nitrification and denitrification. Here we report on the application of the MABR to the removal of fluorinated xenobiotics from wastewater, employing a Pseudomonas knackmussii monoculture to degrade the model compound 4-fluorobenzoate. Growth of biofilm in the MABR using the fluorinated compound as the sole carbon source occurred in two distinct phases, with early rapid growth (up to 0.007 h−1) followed by ten-fold slower growth after 200 h operation. Furthermore, the specific 4-fluorobenzoate degradation rate decreased from 1.2 g g−1 h−1 to 0.2 g g−1 h−1, indicating a diminishing effectiveness of the biofilm as thickness increased. In planktonic cultures stoichiometric conversion of substrate to the fluoride ion was observed, however in the MABR, approximately 85% of the fluorine added was recovered as fluoride, suggesting accumulation of ‘fluorine’ in the biofilm might account for the decreasing efficiency. This was investigated by culturing the bacterium in a tubular biofilm reactor (TBR), revealing that there was significant fluoride accumulation within the biofilm (0.25 M), which might be responsible for inhibition of 4-fluorobenzoate degradation. This contention was supported by the observation of the inhibition of biofilm accumulation on glass cover slips in the presence of 40 mM fluoride. These experiments highlight the importance of fluoride ion accumulation on biofilm performance when applied to organofluorine remediation.
      1070Scopus© Citations 33
  • Publication
    Membrane aerated biofilms for high rate biotreatment : performance appraisal, engineering principles, scale-up and development requirements
    (ACS, 2008-03-15) ;
    Diffusion of the electron acceptor is the rate controlling step in virtually all biofilm reactors employed for aerobic wastewater treatment. The membrane-aerated biofilm reactor (MABR) is a technology that can deliver oxygen at high rates and transfer efficiencies, thereby enhancing the biofilm activity. This paper provides a comparative performance rate analysis of the MABR in terms of its application for carbonaceous pollutant removal, nitrification/denitrification and xenobiotic biotreatment. We also describe the mechanisms influencing process performance in the MABR and the inter-relationships between these factors. The challenges involved in scaling-up the process are discussed with recommendations for prioritization of research needs.
      2307Scopus© Citations 228
  • Publication
    Studies on the effect of concentration of a self-inhibitory substrate on biofilm reaction rate under co-diffusion and counter diffusion configurations
    (Elsevier, 2009-06-15) ; ;
    A simple mathematical model was developed to investigate the utilization rate of a self-inhibitory substrate in idealised biofilm reactors operating with either counter-diffusion or co-diffusion of oxygen and phenol. This study has implications for the development of membrane-supported biofilm technologies, such as the membrane-aerated biofilm reactor. An unsteady-state formulation of the model was used to investigate the effect of shock loads of phenol on biofilm performance. It was found that the counter-diffusion configuration may be advantageous under high phenol concentrations provided the biofilm thickness is above a critical value. The performance advantage of the counter-diffusion configuration is gained by the presence of an oxygen depleted layer, adjacent to the liquid–biofilm interface which acts as a diffusive barrier to phenol transport to the region of respiratory activity.
      457Scopus© Citations 14