Now showing 1 - 6 of 6
  • Publication
    Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches
    Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.
      387Scopus© Citations 121
  • Publication
    Differential localization of A-Raf regulates MST2-mediated Apoptosis during Epithelial Differentiation
    A-Raf belongs to the family of oncogenic Raf kinases that are involved in mitogenic signaling by activating the MEK-ERK pathway. Low kinase activity of A-Raf toward MEK suggested that A-Raf might have alternative functions. We recently identified A-Raf as a potent inhibitor of the proapoptotic mammalian sterile 20-like kinase (MST2) tumor suppressor pathway in several cancer entities including head and neck, colon, and breast. Independent of kinase activity, A-Raf binds to MST2 thereby efficiently inhibiting apoptosis. Here, we show that the interaction of A-Raf with the MST2 pathway is regulated by subcellular compartmentalization. Although in proliferating normal cells and tumor cells A-Raf localizes to the mitochondria, differentiated non-carcinogenic cells of head and neck epithelia, which express A-Raf at the plasma membrane. The constitutive or induced re-localization of A-Raf to the plasma membrane compromises its ability to efficiently sequester and inactivate MST2, thus rendering cells susceptible to apoptosis. Physiologically, A-Raf re-localizes to the plasma membrane upon epithelial differentiation in vivo. This re-distribution is regulated by the scaffold protein kinase suppressor of Ras 2 (KSR2). Downregulation of KSR2 during mammary epithelial cell differentiation or siRNA-mediated knockdown re-localizes A-Raf to the plasma membrane causing the release of MST2. By using the MCF7 cell differentiation system, we could demonstrate that overexpression of A-Raf in MCF7 cells, which induces differentiation. Our findings offer a new paradigm to understand how differential localization of Raf complexes affects diverse signaling functions in normal cells and carcinomas.
      391Scopus© Citations 13
  • Publication
    Evaluating Strategies to Normalise Biological Replicates of Western Blot Data
    Western blot data are widely used in quantitative applications such as statistical testing and mathematical modelling. To ensure accurate quantitation and comparability between experiments, Western blot replicates must be normalised, but it is unclear how the available methods affect statistical properties of the data. Here we evaluate three commonly used normalisation strategies: (i) by fixed normalisation point or control; (ii) by sum of all data points in a replicate; and (iii) by optimal alignment of the replicates. We consider how these different strategies affect the coefficient of variation (CV) and the results of hypothesis testing with the normalised data. Normalisation by fixed point tends to increase the mean CV of normalised data in a manner that naturally depends on the choice of the normalisation point. Thus, in the context of hypothesis testing, normalisation by fixed point reduces false positives and increases false negatives. Analysis of published experimental data shows that choosing normalisation points with low quantified intensities results in a high normalised data CV and should thus be avoided. Normalisation by sum or by optimal alignment redistributes the raw data uncertainty in a mean-dependent manner, reducing the CV of high intensity points and increasing the CV of low intensity points. This causes the effect of normalisations by sum or optimal alignment on hypothesis testing to depend on the mean of the data tested; for high intensity points, false positives are increased and false negatives are decreased, while for low intensity points, false positives are decreased and false negatives are increased. These results will aid users of Western blotting to choose a suitable normalisation strategy and also understand the implications of this normalisation for subsequent hypothesis testing.
      456Scopus© Citations 147
  • Publication
    Signalling mechanisms regulating phenotypic changes in breast cancer cells
    In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citratelyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways.
      351Scopus© Citations 9
  • Publication
    The secret life of kinases: functions beyond catalysis
    (Springer (Biomed Central Ltd.), 2011) ; ; ;
    Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.
      426Scopus© Citations 143