Now showing 1 - 3 of 3
  • Publication
    Flow enhanced non-linear magnetophoretic separation of beads based on magnetic susceptibility
    (Royal Society of Chemistry, 2013-08-20) ; ; ;
    Magnetic separation provides a rapid and efficient means of isolating biomaterials from complex mixtures based on their adsorption on superparamagnetic (SPM) beads. Flow enhanced non-linear magnetophoresis (FNLM) is a high-resolution mode of separation in which hydrodynamic and magnetic fields are controlled with micron resolution to isolate SPM beads with specific physical properties. In this article we demonstrate that a change in the critical frequency of FNLM can be used to identify beads with magnetic susceptibilities between 0.01 and 1.0 with a sensitivity of 0.01 Hz(-1). We derived an analytical expression for the critical frequency that explicitly incorporates the magnetic and non-magnetic composition of a complex to be separated. This expression was then applied to two cases involving the detection and separation of biological targets. This study defines the operating principles of FNLM and highlights the potential for using this technique for multiplexing diagnostic assays and isolating rare cell types.
      453Scopus© Citations 22
  • Publication
    A microfluidic dual gradient generator for conducting cell-based drug combination assays
    We present a microfluidic chip that generates linear concentration gradients of multiple solutes that are orthogonally-aligned to each other. The kinetics of gradient formation was characterized using a fluorescent tracer matching the molecular weight of small inhibitory drugs. Live-cell signalling and motility experiments were conducted to demonstrate the potential uses and advantages of the device. A431 epidermoid carcinoma cells, where EGF induces apoptosis in a concentration-dependent manner, were simultaneously exposed to gradients of MEK inhibitor and EGF receptor (EGFR) inhibitor. By monitoring live caspase activation in the entire chip, we were able to quickly assess the combinatorial interaction between MEK and EGFR pathways, which otherwise would require costly and time consuming titration experiments. We also characterized the motility and morphology of MDA-MB-231 breast cancer cells exposed to orthogonal gradients of EGF and EGFR inhibitor. The microfluidic chip not only permitted the quantitative analysis of a population of cells exposed to drug combinations, but also enabled the morphological characterization of individual cells. In summary, our microfluidic device, capable of establishing concentration gradients of multiple compounds over a group of cells, facilitates and accelerates in vitro cell biology experiments, such as those required for cell-based drug combination assays.
      559Scopus© Citations 23
  • Publication
    Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells
    Nonlinear magnetophoresis (NLM) is a powerful approach for on-chip transport and separation of superparamagnetic (SPM) beads, based on a travelling magnetic field wave generated by the combination of a micromagnet array (MMA) and an applied rotating magnetic field. Here, we present two novel MMA designs that allow SPM beads to be focused, sorted, and separated on-chip. Converging MMAs were used to rapidly collect the SPM beads from a large region of the chip and focus them into synchronized lines. We characterise the collection efficiency of the devices and demonstrate that they can facilitate on-chip analysis of populations of SPM beads using a single-point optical detector. The diverging MMAs were used to control the transport of the beads and to separate them based on their size. The separation efficiency of these devices was determined by the orientation of the magnetisation of the micromagnets relative to the external magnetic field and the size of the beads relative to that of micromagnets. By controlling these parameters and the rotation of the external magnetic field we demonstrated the controlled transport of SPM bead-labelled single MDA-MB-231 cells. The use of these novel MMAs promises to allow magnetically-labelled cells to be efficiently isolated and then manipulated on-chip for analysis with high-resolution chemical and physical techniques.
      455Scopus© Citations 10