Now showing 1 - 8 of 8
  • Publication
    Genetically modified mesenchymal stem cells and their clinical potential in acute cardiovascular disease
    (Discovery Medicine, 2010-03-14) ; ; ;
    Adult mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. However, the current understanding from results of clinical trials is that MSC-therapy is safe but its therapeutic efficiency needs to be improved. In this article we will focus on options for genetic manipulation of MSCs and on current progress in adapting genetically-modified MSCs for clinical use in acute cardiovascular disease.
      125
  • Publication
    Strategies for improved targeting of therapeutic cells: implications for tissue repair
    (European Cells & Materials Ltd, 2012-04-21) ; ; ;
    Multipotent mesenchymal stem cells (MSCs) have been suggested as a suitable cell source for cell-based treatments for diseases such as osteoarthritis due to their ability to differentiate towards chondrogenic and osteogenic lineages. MSCs can be obtained from a variety of tissue sources, are scalable for mass-production and immuno-privileged enabling their use for allogeneic cell therapy. However, recent pre-clinical studies and clinical trials point to the necessity of increasing engraftment and efficacy of MSCs. This review explores how cell surface modification of the cells can improve homing of MSCs and summarises the use of nanoparticles to enable gene delivery by stem cells as well as facilitate in vivo imaging. The use of advanced biomaterials and how they can be applied to reduce the overall dose of MSCs during therapeutic interventions while achieving optimal targeting efficiency of cells to the diseased sites are addressed. Particular attention is paid to methods that improve engraftment of MSCs to cartilage and research describing combinatorial approaches of particle-based cell therapies for improved regeneration of this tissue is reviewed. The use of such approaches will add to the array of potential regenerative therapeutics for treatment of osteoarthritis.
      500
  • Publication
    Mesenchymal chondroprogenitor cell origin and therapeutic potential
    (Springer (Biomed Central Ltd.), 2011) ; ; ;
    Mesenchymal progenitor cells, a multipotent adult stem cell population, have the ability to differentiate into cells of connective tissue lineages, including fat, cartilage, bone and muscle, and therefore generate a great deal of interest for their potential use in regenerative medicine. During development, endochondral bone is formed from a template of cartilage that transforms into bone; however, mature articular cartilage remains in the articulating joints, where its principal role is reducing friction and dispersing mechanical load. Articular cartilage is prone to damage from sports injuries or ageing, which regularly progresses to more serious joint disorders, such as osteoarthritis. Osteoarthritis is a degenerative joint disease characterized by the thinning and eventual wearing of articular cartilage, and affects millions of people worldwide. Due to low chondrocyte motility and proliferative rates, and complicated by the absence of blood vessels, cartilage has a limited ability to self-repair. Current pharmaceutical and surgical interventions fail to generate repair tissue with the mechanical and cellular properties of native host cartilage. The long-term success of cartilage repair will therefore depend on regenerative methodologies resulting in the restoration of articular cartilage that closely duplicates the native tissue. For cell-based therapies, the optimal cell source must be readily accessible with easily isolated, abundant cells capable of collagen type II and sulfated proteoglycan production in appropriate proportions. Although a cell source with these therapeutic properties remains elusive, mesenchymal chondroprogenitors retain their expansion capacity with the promise of reproducing the structural or biomechanical properties of healthy articular cartilage. As current knowledge regarding chondroprogenitors is relatively limited, this review will focus on their origin and therapeutic application
      277Scopus© Citations 55
  • Publication
    ROCK activity and the Gβγ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells
    Bone marrow-derived stromal cells (BMSCs), also known as mesenchymal stem cells, are the focus of intensive efforts worldwide to elucidate their function and biology. Despite the importance of BMSC migration for their potential therapeutic uses, the mechanisms and signalling governing stem cell migration are still not fully elucidated. Methods: We investigated and detailed the effects of MCP-1 activation on BMSCs by using inhibitors of G protein-coupled receptor alpha beta (GPCR αβ), ROCK (Rho-associated, coiled-coil containing protein kinase), and PI3 kinase (PI3K). The effects of MCP-1 stimulation on intracellular signalling cascades were characterised by using immunoblotting and immunofluorescence. The effectors of MCP-1-mediated migration were investigated by using migration assays (both two-dimensional and three-dimensional) in combination with inhibitors. Results: We established the kinetics of the MCP-1-activated signalling cascade and show that this cascade correlates with cell surface re-localisation of chemokine (C motif) receptor 2 (CCR2) (the MCP-1 receptor) to the cell periphery following MCP-1 stimulation. We show that MCP-1-initiated signalling is dependent on the activation of βγ subunits from the GPCR αβγ complex. In addition, we characterise a novel role for PI3Kγ signalling for the activation of both PAK and ERK following MCP-1 stimulation. We present evidence that the Gβγ complex is responsible for PI3K/Akt, PAK, and ERK signalling induced by MCP-1 in BMSCs. Importantly, we found that, in BMSCs, inhibition of ROCK significantly inhibits MCP-1-induced chemotactic migration, in contrast to previous reports in other systems.Conclusions: Our results indicate differential chemotactic signalling in mouse BMSCs, which has important implications for the translation of in vivo mouse model findings into human trials. We identified novel components and interactions activated by MCP-1-mediated signalling, which are important for stem cell migration. This work has identified additional potential therapeutic targets that could be manipulated to improve BMSC delivery and homing.
      254Scopus© Citations 13
  • Publication
    Mesenchymal Stem Cells and Osteoarthritis: Remedy or Accomplice?
    Multipotent mesenchymal stromal or stem cells (MSCs) are likely to be agents of connective tissue homeostasis and repair. Because the hallmark of osteoarthritis (OA) is degeneration and failure to repair connective tissues it is compelling to think that these cells have a role to play in OA. Indeed, MSCs have been implicated in the pathogenesis of OA and, in turn, progression of the disease has been shown to be therapeutically modulated by MSCs. This review discusses current knowledge on the potential of both marrow- and local joint-derived MSCs in OA, the mode of action of the cells, and possible effects of the osteoarthritic niche on the function of MSCs. The use of stem cells for repair of isolated cartilage lesions and strategies for modulation of OA using local cell delivery are discussed as well as therapeutic options for the future to recruit and appropriately activate endogenous progenitors and/or locally systemically administered MSCs in the early stages of the disease. The use of gene therapy protocols, particularly as they pertain to modulation of inflammation associated with the osteoarthritic niche, offer an additional option in the treatment of this chronic disease. In summary, elucidation of the etiology of OA and development of technologies to detect early disease, allied to an increased understanding of the role MSCs in aging and OA, should lead to more targeted and efficacious treatments for this debilitating chronic disease in the future.
      890Scopus© Citations 56
  • Publication
    Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia
    Currently there is intense interest in using mesenchymal stem cells (MSC) for therapeutic interventions in many diseases and conditions. To accelerate the therapeutic use of stem cells we must understand how they sense their environment. Primary cilia are an extracellular sensory organelle present on most growth arrested cells that transduce information about the cellular environment into cells, triggering signaling cascades that have profound effects on development, cell cycle, proliferation, differentiation and migration. Migrating cells likely encounter differing oxygen tensions, therefore we investigated the effect of oxygen tension on cilia. Using bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) we found that oxygen tension significantly affected the length of cilia in primary BMSCs. Chronic exposure to hypoxia specifically down-regulated genes involved in hedgehog signaling and re-localized the Smo and Gli2 proteins to cilia. Investigating the effects of chemotactic migration on cilia, we observed significantly longer cilia in migrating cells which was again, strongly influenced by oxygen tension. Finally, using computational modeling we identified links between migration and ciliation signaling pathways, characterizing the novel role of HSP90 and PI3K signaling in regulating BMSC cilia length. These findings enhance our current understanding of BMSC adaptions to hypoxia and advance our knowledge of BMSC biology and cilia regulation.
      498Scopus© Citations 16
  • Publication
    Advances in mesenchymal stem cell-mediated gene therapy for cancer
    (Springer (Biomed Central Ltd.), 2010) ; ; ;
    Mesenchymal stem cells have a natural tropism for tumours and their metastases, and are also considered immunoprivileged. This remarkable combination of properties has formed the basis for many studies investigating their potential as tumour-specific delivery vehicles for suicide genes, oncolytic viruses and secreted therapeutic proteins. The aim of the present review is to discuss the range of approaches that have been used to exploit the tumour-homing capacity of mesenchymal stem cells for gene delivery, and to highlight advances required to realize the full potential of this promising approach.
      534Scopus© Citations 83