Now showing 1 - 2 of 2
  • Publication
    Hartmann–Shack wavefront sensing without a lenslet array using a digital micromirror device
    The common Hartmann–Shack wavefront sensor makes use of a lenslet array to sample in-parallel optical wavefronts. Here, we introduce a Hartmann–Shack wavefront sensor that employs a digital micromirror device in combination with a single lens for serial sampling by scanning. Sensing is analyzed numerically and validated experimentally using a deformable mirror operated in closed-loop adaptive optics with a conventional Hartmann–Shack wavefront sensor, as well as with a set of ophthalmic trial lenses, to generate controllable amounts of monochromatic aberrations. The new sensor is free of crosstalk and can potentially operate at kilohertz speed. It offers a reconfigurable aperture that can exclude unwanted parts of the wavefront.
    Scopus© Citations 23  778
  • Publication
    Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device
    Purpose: Photoreceptor light acceptance is closely tied to the Stiles-Crawford effect of the first kind (SCE-I). Whether the SCE-I plays a role in myopic development remains unclear although a reduction in directionality has been predicted for high myopia. The purpose of this study is to analyse the relationship between foveal SCE-I directionality, axial length, and defocus for emmetropic subjects wearing ophthalmic trial lenses during psychophysical measurements and for myopic subjects with their natural correction. Method: A novel uniaxial flicker system has been implemented making use of a Digital Micromirror Device (DMD) to flicker between a 2.3 visual degrees circular reference and a set of circular test patterns in a monocular Maxwellian view at 1 Hz. The brightness of the test is adjusted by the duty cycle of the projected light to an upper limit of 22727 Hz. The wavelength and bandwidth are set by a tuneable liquid-crystal filter centred at 550 nm. A total of 4 measurement series for 11 pupil entrance points have been realized for the right eye of 5 emmetropic and 8 myopic subjects whose pupils were dilated with tropicamide. The emmetropic subjects wore ophthalmic trial lenses in the range of -3 to +9 dioptres to mimic hyperopic to highly myopic vision and resulting visibility plots have been fitted to a Gaussian SCE-I function. In turn, the myopic subjects wore their natural correction during the analysis of the SCE-I. All subjects had their axial length determined with an ultrasound device. Results: A SCE-I directionality parameter for well-corrected vision in the range of 0.03 to 0.06/mm2 was found for the emmetropic subjects with corrected vision in fair agreement to values in the literature. The results also revealed a marked reduction in directionality in the range from 16% to 30% with every 3 dioptre increase of simulated myopia, as well as a 10% increased directionality in simulated hyperopic eyes. For both emmetropic and myopic subjects a decrease in directionality with axial length was found in agreement with theoretical expectations. Conclusion: The study confirms a clear link between SCE-I directionality, uncorrected defocus, and axial length. This may play a role for emmetropization and thus myopic progression as cone photoreceptors capture light from a wider pupil area in elongated eyes due to a geometrical scaling.
    Scopus© Citations 24  578