Now showing 1 - 10 of 17
  • Publication
    Dynamic Tensile Properties of Human Skin
    (International Research Council on the Biomechanics of Injury, 2012) ; ; ;
    The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. Studies have shown that the anisotropic effects of skin have been linked to sample orientation with respect to contour lines of tension, i.e. the Langer’s lines. There have been numerous studies undertaken to calculate the influence of Langer’s lines on the mechanical properties of human skin at quasistatic strain rates; however, it is relatively unknown what occurs at dynamic speeds. This study conducts a number of dynamic mechanical tensile tests to investigate the influence dynamic speeds have on the mechanical properties of human skin. The testing protocol involves uniaxial tensile tests at three different dynamic speeds, 1m/s, 1.5m/s and 2m/s, performed using an Instron tensile test machine. A total of 33 tests were conducted on 3 human cadavers aged 85, 77 and 82. Samples were excised at specific locations and orientations with respect to the Langer’s lines. The purpose for this was to recognise the significance that location and orientation have on the mechanical properties of human skin. The mean ultimate tensile strength (UTS) was 27.2±9.3MPa, the mean strain energy was 4.9±1.5MJ/m3, the mean elastic modulus was 98.97±97MPa and the mean failure strain was 25.45±5.07%. This new material data for human skin can be applied to constitutive models in areas such as impact biomechanics, forensic science and computer‐assisted surgery.
      2793
  • Publication
    Non-invasive evaluation of skin tension lines with elastic waves
    Background: Since their discovery by Karl Langer in the 19th Century, Skin Tension Lines (STLs) have been used by surgeons to decide the location and orientation of an incision. Although these lines are patient-specific, most surgeons rely on generic maps to determine their orientation. Beyond the imprecise pinch test, there still exists no accepted method for determining the STLs in vivo. Methods: (i) The speed of an elastic motion travelling radially on the skin of canine cadavers was measured with a commercial device called the Reviscometer R . (ii) Similar to the original experiments conducted by Karl Langer, circular excisions were made on the skin and the subsequent geometric changes to the resulting wounds and excised samples were used to determine the orientation of STLs. Results A marked anisotropy in the speed in the elastic wave travelling radially was observed. The orientation of the fastest wave was found to correlate with the orientation of the elongated wound (P < 0.001, R2 = 74%). Similarly, the orientation of fastest wave was the same for both in vivo and excised isolated samples, indicating that the STLs have a structural basis. Resulting wounds expanded by an average area of 9% (+16% along STL and −10% across) while excised skin shrunk by an average of 33% (23% along STL and 10% across). Conclusion: Elastic surface wave propagation has been validated experimentally as a robust method for determining the orientation of STLs nondestructively and non-invasively. This study has implications for the identification of STLs and for the prediction of skin tension levels, both important factors in reconstructive surgeries for both medicine and veterinary medicine.
      427Scopus© Citations 15
  • Publication
    Additive Manufacture of Composite Soft Pneumatic Actuators
    This article presents a direct additive manufacturing method for composite material soft pneumatic actuators that are capable of performing a range of programmable motions. Commonly, molding is the method used to manufacture soft fluidic actuators. This is material, labor, and time intensive and lacks the design freedom to produce custom actuators efficiently. This article proposes an alternative semiautomated method of designing and manufacturing composite soft actuators. An affordable, open-source, desktop three-dimensional (3D) printer was modified into a four-axis, combined, fused deposition modeling, and paste extrusion printer. A Grasshopper 3D algorithm was devised to implement custom actuator designs according to user inputs, resulting in a G-code print file. Bending, contracting, and twisting motion actuators were parametrically designed and subsequently additively manufactured from silicone and thermoplastic elastomer (TPE) materials. Experimental testing was completed on these actuators along with their constitutive materials. Finite element models were created to simulate the actuator's kinematic performance. Having a platform method to digitally configure and directly additively manufacture custom-motion, composite soft actuators has the potential to accelerate the development of more intricate designs and lead to potential impacts in a range of areas, including in-clinic personalization of soft assistive devices and patient-specific biomedical devices.
      1258Scopus© Citations 35
  • Publication
    Automated Estimation of Collagen Fibre Dispersion in the Dermis and its Contribution to the Anisotropic Behaviour of Skin
    Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis (p<0.001,R 2 =0.95) was observed. The structural parameters of the Gasser–Ogden–Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was κ=0.1404±0.0028. The constitutive parameters μ, k 1 and k 2 were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for μ, k 1 and k 2 were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.
      553Scopus© Citations 131
  • Publication
    Deficiencies in numerical models of anisotropic nonlinearly elastic materials
    Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson’s ratio' close to the perfect incompressibility limit of 1/2 are made.
      535Scopus© Citations 34
  • Publication
    Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates
    Several biomedical applications require knowledge of the behaviour of the scalp, including skin grafting, skin expansion and head impact biomechanics. Scalp tissue exhibits a non-linear stress-strain relationship, anisotropy and its mechanical properties depend on strain rate. When modelling the behaviour of the scalp, all these factors should be considered in order to perform realistic simulations. Here, tensile tests at strain rates between 0.005 and 100 s−1 have been conducted on porcine and human scalp in order to investigate the non-linearity, anisotropy, and strain rate dependence of the scalp mechanical properties. The effect of the orientation of the sample with respect to the Skin Tension Lines (STLs) was considered during the test. The results showed that anisotropy is evident in the hyperelastic response at low strain rates (0.005 s−1) but not at higher strain rates (15-100 s−1). The mechanical properties of porcine scalp differ from human scalp. In particular, the elastic modulus and the Ultimate Tensile Strength (UTS) of the porcine scalp were found to be almost twice the values of the human scalp, whereas the stretch at failure was not found to be significantly different. An anisotropic hyperelastic model (Gasser-Ogden-Holzapfel) was used to model the quasi-static behaviour of the tissue, whereas three different isotropic hyperelastic models (Fung, Gent and Ogden) were used to model the behaviour of scalp tissue at higher strain rates. The experimental results outlined here have important implications for those wishing to model the mechanical behaviour of scalp tissue both under quasi-static and dynamic loading conditions.
      571Scopus© Citations 13
  • Publication
    The Importance of the Scalp in Head Impact Kinematics
    The best way to reduce the risk of head injury (up to 69% reduction) is to wear a helmet. In recent years, the improvement of helmet standard tests focused on reproducing realistic impact conditions and including the effect of rotational acceleration. However, less importance has been given to the development of a realistic headform. The goal of this work was to evaluate the role of scalp tissue in head impact kinematics; both with respect to its mechanical properties and with respect to its sliding properties. An EN960 and HIII headform were subjected to linear and oblique impacts, respectively, both with and without porcine scalp attached. Different speeds, impact locations and impact surfaces were tested. Standard linear drop tests (EN960) showed that the scalp reduced the impact energy by up to 68.7% (rear impact). Oblique head impact tests showed how the headform-anvil friction coefficient changes when the HIII is covered with scalp, affecting linear and rotational accelerations. Therefore, the scalp plays an important role in head impacts and it should be realistically represented in headforms used for impact tests and in numerical models of the human head.
      344Scopus© Citations 18
  • Publication
    Manufacturing custom-contoured wheelchair seating: A state-of-the-art review
    Background: Custom-contoured wheelchair seating lowers risk of pressure injury and postural deterioration while custom-contoured wheelchair seating lowers risk of pressure injury and postural deterioration while increasing the stability and functional activity of the wheelchair occupant. Producing custom-contoured seating systems has historically been a labour-intensive process custom-contoured seating systems is historically labour-intensive. Objectives: Evaluate the strengths and limitations of current manufacturing processes for custom-contoured wheelchair seating to suggest potential future manufacturing processes. Study Design: Literature review of the state of the art. Methods: Research conducted through a literature review focused on the performance of different types of custom-contoured wheelchair seating products and processes over the last 40 years. Recent literature in orthotics and prosthetics was also consulted to assess future trends in seating. Results: There are five main manufacturing processes currently used to produce custom-contoured wheelchair seating systems. No single process is yet suitable for all wheelchair users, but many manufacturers are transitioning to computer numerical controlled (CNC) milling to reduce manual labour. Adjustable micro-modular seating and moulded seat insert manufacturing are also prevalent and offer alternative seating to soft foam carving. Conclusion: There is a need in the custom wheelchair seating sector for processes that are fast, cost-effective, produce little to no material waste, and that can effectively maintain a comfortable seating micro-climate. Additive manufacturing may meet these criteria, but further evaluation is required. Clinical relevance: This review suggests that the custom-contoured wheelchair seating manufacturers are moving away from labour-intensive processes towards digital techniques, like CNC foam milling. Additive manufacturing is a potential new process that may reduce overall costs, the lead time in preparing seats and has the potential to better manage the seating micro-climate.
      1771Scopus© Citations 3
  • Publication
    Towards a predictive assessment of stab-penetration forces
    Collaborative research between the disciplines of forensic pathology and biomechanics was undertaken to investigate the hyperelastic properties of human skin, to determine the force required for sharp instrument penetration of skin, and to develop a finite element model, which reflects the mechanisms of sharp instrument penetration. These studies have led to the development of a 'stab metric', based on simulations, to describe the force magnitudes in stabbing incidents. Such a metric should, in time, replace the crudely quantitative descriptors of stabbing forces currently used by forensic pathologists.
      328Scopus© Citations 8