Now showing 1 - 2 of 2
  • Publication
    Genetic variation among endangered Irish red grouse (Lagopus lagopus hibernicus) populations: implications for conservation and management.
    Extant populations of Irish red grouse (Lagopus lagopus hibernicus) are both small and fragmented, and as such may have an increased risk of extinction through the effects of inbreeding depression and compromised adaptive potential. Here we used 19 microsatellite markers to assay genetic diversity across 89 georeferenced samples from putatively semi-isolated areas throughout the Republic of Ireland and we also genotyped 27 red grouse from Scotland using the same markers. The genetic variation within Ireland was low in comparison to previously published data from Britain and the sample of Scottish red grouse, and comparable to threatened European grouse populations of related species. Irish and Scottish grouse were significantly genetically differentiated (FST = 0.07, 95% CI = 0.04–0.10). There was evidence for weak population structure within Ireland with indications of four distinct genetic clusters. These correspond approximately to grouse populations inhabiting suitable habitat patches in the North West, Wicklow Mountains, Munster and Cork, respectively, although some admixture was detected. Pair-wise FST values among these populations ranged from 0.02 to 0.04 and the overall mean allelic richness was 5.5. Effective population size in the Munster area was estimated to be 62 individuals (95% CI = 33.6–248.8). Wicklow was the most variable population with an AR value of 5.4 alleles/locus. Local (Munster) neighbourhood size was estimated to 31 individuals corresponding to an average dispersal distance of 31 km. In order to manage and preserve Irish grouse we recommend that further fragmentation and destruction of habitats need to be prevented in conjunction with population management, including protection of the integrity of the existing population by refraining from augmenting it with individuals from mainland Britain to maximise population size.
    Scopus© Citations 7  616
  • Publication
    Amplification success of multilocus genotypes from feathers found in the field compared with feathers obtained from shot birds
    Effective DNA extraction methods from bird feathers have facilitated non-invasive sampling, leading to the suggestion that feathers are a great source for genetic studies. However, few studies have assessed whether all feathers can be used or provide equal numbers of useful templates. In this study, feathers collected in various ways from Red Grouse Lagopus lagopus were examined to establish the quality of DNA extracted. Individual samples were classified into two categories according to whether they were collected from shot birds or found in the field. DNA was extracted from all samples and genotyped at 19 microsatellite loci. PCR products were analysed on a MegaBACE 1000. A total of 93% of the ‘shot’ category produced a genotype that was considered successful (i.e. 15 of 18 loci) and 23% of the ‘collected’ category produced successful genotypes under the same criteria. There was a significant difference between shot and collected samples in genotyping success and the observed number of missing loci. Recommendations and best practices are discussed along with the utility of bird feathers as a source of DNA for population and conservation biology.
    Scopus© Citations 18  748