Now showing 1 - 5 of 5
  • Publication
    Controlled charging of electric vehicles in residential distribution networks
    (Institute of Electrical and Electronics Engineers, 2012-10) ; ; ;
    The integration of electric vehicles (EVs) poses potential issues for low voltage (LV) distribution networks, such as voltage deviations and overloading of equipment. Controlled EV charging is seen as one possibility for reducing, or even eliminating, these issues. This work presents an optimisation method which focuses on controlling the rate at which EVs charge over a 24-hour time horizon, subject to certain constraints. A sample distribution network is used and the optimisation tool is tested for multiple objective functions.
    Scopus© Citations 11  1142
  • Publication
    Impact assessment of varying penetrations of electric vehicles on low voltage distribution systems
    Advances in the development of electric vehicles, along with policy incentives will see a wider uptake of this technology in the transport sector in future years. However, the widespread implementation of electric vehicles could lead to adverse effects on power system networks, especially existing distribution networks. This work investigates some of the potential impacts from various levels of uncontrolled electric vehicle charging on a test distribution network. The network is examined under worst case scenario conditions for residential electricity demand in an effort to assess the full impact from electric vehicles. The results demonstrate that even for relatively modest levels of electric vehicle charging, both the voltage and thermal loading levels can exceed safe operating limits. The results also indicate the importance of assessing each phase on the network separately in order to capture the full effects of uncontrolled electric vehicle charging on the network.
    Scopus© Citations 172  3001
  • Publication
    Impact of high penetrations of micro-generation on low voltage distribution networks
    Due to rising fossil fuel and electricity prices and the overall need to reduce carbon emissions, there is a growing interest in the utilisation of micro-generation amongst electricity consumers and governments alike. Electricity consumers are installing small scale generators on their premises, which are also being connected to existing low voltage (LV) electricity supply networks. High penetrations of micro-generation may present challenges to the planning and operation of LV electricity networks. This is due to LV distribution networks being designed for delivery of electricity from sub-stations to the consumers and not for accommodating generation. The aim of the work presented in this paper is to examine the effect of high penetrations of micro-generation on the voltage levels of a section of existing Irish LV distribution network.
      4647
  • Publication
    Stochastic analysis of the impact of electric vehicles on distribution networks
    Advances in the development of electric vehicles, along with policy incentives, will see a wider uptake of this technology in the transport sector in future years. However, large penetrations of EVs could lead to adverse effects on power system networks, especially at the residential distribution network level. These effects could include excessive voltage drop and thermal loading of network components. A stochastic method is developed to take account of the uncertainties associated with EV charging and the technique is implemented on a residential test network using power system simulation software. The results show how voltage levels, component loading network losses are impacted from EV charging, taking into account the probabilistic behaviour of the EV owners.
      902